
Quantifying Throughput of Basic Blocks on ARM
Microarchitectures by Static Code Analyzers: A

Case Study on Kunpeng 920

Qingcai Jiang†, Shaojie Tan†, Zhenwei Cao†, Xiaoyu Hao†, Junshi Chen† and Hong An†
†School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

Email: †{jqc, shaojiemike, caozhenwei, hxy2018}@mail.ustc.edu.cn, †{cjuns, han}@ustc.edu.cn

Abstract—The performance of high-performance computing
(HPC) and other real-world applications is becoming unpre-
dictable as the micro-architecture of the modern central pro-
cessing unit (CPU) turns to be more and more complex. As a
consequence, predicting the execution time of a code snippet
is notoriously difficult. Basic block throughput predictor, also
known as static code analyzer, provides a ubiquitous way to
predict the execution time of a basic block, which includes
assembly code segments without jump-related instructions. In
this article, we build a workflow to faithfully run, collect and
analyze basic blocks from real-world applications. Several static
code analyzers are introduced, compared and optimized to show
which one performs better on accuracy and other metrics on
Kunpeng 920 processor. Under extensive experiments, we achieve
state-of-the-art 86.7% accuracy in predicting the throughput of
all basic blocks.

Index Terms—High-performance architecture, performance
modeling and simulation, static analysis, in-core architecture
exploration, throughput prediction

I. INTRODUCTION

Recent decades have witnessed the rapid trends of improve-
ments in high-performance processing unit architecture, which
is considered one of the most sophisticated and advanced
man-made machines. To be specific, the prevalent micro-
architecture of the modern high-performance central process-
ing unit (CPU) used in desktop computer and server system
are mostly still based on the von Neumann architecture [1],
which contains three main parts: in-order issuing part as front-
end, out-of-order (OOO) execution part as back end and a
memory subsystem to handle data exchange. Moreover, there
exists a lot of details in the micro-architectures to facilitate in
launching and scheduling of the instructions, such as decoded
stream buffer (DSB), move elimination, micro/macro-fusion
and ones/zeroing idioms [2], to name a few. As a consequence,
all these complex specifics translate to increasing difficulty
in systematically describing, predicting and optimizing the
performance of numerical and industrial applications running
on such systems.

The performance model remains to date the method of
choice to describe the characteristics of a certain CPU, which

Corresponding Authors: Hong An and Junshi Chen

has wide-ranging implications in several fields. For exam-
ple, it can provide software developers an insight into peak
performance, memory traffic and execution time, therefore
showing the potential improvements in compiler and code
optimization. Also, it can provide hardware developers with
possible bottlenecks in the physical design, thus balancing the
trade-offs among energy, performance and cost.

According to their difference in interpretability, perfor-
mance models can be formulated as three major types: ‘white-
box’ performance modeling (a.k.a. mechanistic modeling),
‘black-box’ performance modeling (a.k.a. empirical modeling)
and ‘grey-box’ performance modeling [3]. ‘White-box’ perfor-
mance modeling is built from the first principle information of
a certain CPU architecture to provide an intuitive trace of how
an application is running. ‘Black-box’ performance modeling
is based on statistical data and machine learning methods like
curve fitting and neural networks [4] to automatically infer the
performance of a code snippet without knowing the fundamen-
tal details on a CPU. ‘Grey-box’ performance modeling aims
to bridge the gap between ‘white-box’ performance modeling’s
accuracy and ‘black-box’ performance modeling’s efficiency
which is built from insights in the underlying system but has
a number of unknown parameters. ’White-box’ performance
models at different granularities can give various views at the
system level. For example, the most simple and coarse-grained
’white-box’ performance model is the Roofline model [5],
which evaluates in-core floating performance and out-of-core
memory transfer to estimate whether a given computing kernel
will be computing-limited or memory-limited. At the most
fine-grained level, simulators like gem5 [6] provide a system-
level architecture as well as processor microarchitecture to
run an application using an analytical and cycle-by-cycle way.
There is also a middle-grained performance model called static
code analyzer aiming to predict the steady-state throughput
of basic blocks, i.e., the number of cycles a certain CPU
takes to execute a code snippet (usually without jump-related
instructions) in a steady state.

Static code analyzer, also known as basic block throughput
predictor, which mainly focuses on simulating the in-core

performance, offers great advances for compiler designers,
performance engineers and chip architects. For instance, static
code analyzers can show potential improvements for compiler
designers on vectorization, instruction scheduling and logical-
physical register mapping [7]–[9]. At the same time, static
code analyzers can point out underlying bottlenecks for a given
kernel for performance engineers to optimize the framework
for their codes. As for chip architects, static code analyzers
can give an analytical view of certain underlying problems,
for instance, which execution port is the bottleneck of a given
benchmark, and how to adjust the number of pipeline stages
et al. Furthermore, chip architects can take advantage of these
data to guide the design of next-generation chips.

In recent years, several static code analyzers have been pro-
posed to partially address the aforementioned problems, both
in ’white-box’ and ’black-box’ models, such as OSACA [10],
[11], llvm-mca [12], IACA [13], CQA [14], Ithemal [15],
DiffTune [16] and uiCA [17]. However, few of these tools
are designed for Arm CPU architecture and AArch64 ISA,
which are the fundamental basis of the Kunpeng 920 high-
performance server processor [18]. Only llvm-mca provides
native support for TaiShan v110 (TSV 110) micro-architecture
of Kunpeng 920 processor [19], but our tests show that this
implementation cannot provide the convincing accuracy we
needed.

In this work, we provide a solution to predict basic blocks
with much higher precision on the Kunpeng 920 processor
by using the optimized version of llvm-mca, which opens the
door for guiding the optimization of numerical computation-
intensive kernels and providing analytical insights for compiler
developers.

We summarize the contributions as follows:

• We collect the information for describing an instruction
in the framework of basic block throughput predictor,
including throughput, latency, port pressure, operands and
micro-ops (uops), in a given Kunpeng 920 processor.

• We build an extensive benchmark from real-world appli-
cations and conventional evaluation tools, together with
a runtime environment system to run a basic block and
get the accurate corresponding throughput.

• After comparing several static code analyzers in the terms
of accuracy and additional metrics, we determine llvm-
mca as a continuously developing framework to predict
the throughput of basic blocks. In addition, we figure
out several issues that cause performance degradation in
llvm-mca.

• Vast experiments are performed to evaluate the effective-
ness of our methods, which show that our results exceed
current tools in AARch64 architecture by a wide margin.

• We have open-sourced our work at Github12 in the
hope that our approach can provide insight for rele-
vant work aiming at statically benchmarking the steady-

1https://github.com/qcjiang/llvm-project/tree/tsv110
2https://github.com/qcjiang/OSACA

state throughput of basic blocks on particular high-
performance microarchitectures.

II. RELATED WORK

A. Different Types of Performance Models

Fig. 1. A generic model of modern CPU design containing an in-order issue
part, an out-of-order execution part and a memory subsystem.

Existing performance models can be roughly catego-
rized into two types: simulation-based models and machine-
learning-based models, subsequently, simulation-based models
can be distinguished according to their particular granularity
in different system levels.

At the higher level, which includes multi-core and memory
systems, the most simple yet effective performance model
tool is the Roofline model [5]. It defines operational intensity
as the ratio of executed floating-point operations and the
total traffic of bytes, therefore the Roofline model gives an
upper bound for the feasible performance, which can be either
compute bound or memory bound. To present a more specific
performance, the Execution-Cache-Memory (ECM) [20] intro-
duces different memory hierarchies to describe data transfer
time according to the bandwidth of the corresponding cache
level. Several high-performance applications like stencil [21],
explicit ODE methods [22], Jacobi smoother kernel [23],
SpMV and Lattice QCD [24] can be modeled, predicted and
optimized precisely within the framework of the ECM model.

At the lower level, which focuses on single-core perfor-
mance and excludes memory access, static code analyzers are
able to provide compelling simulation analysis by giving an
assumption of the throughput of an assembly instruction ker-
nel. They are generally composed of an in-order front-end, an
out-of-order backend and a memory subsystem like Figure 1.
The Open Source Architecture Code Analyzer (OSACA) [10],
[11] is an open-source basic block analyzer for some of the
Intel, AMD and ARM micro-architectures. It provides fast
throughput analysis and detection for critical path and loop-
carried dependencies, but this coarse-grained model could not

be modified to add specific micro-architectures like instruction
decoder, reorder buffer and so on. LLVM Machine Code
Analyzer (llvm-mca) [12] is a performance analysis tool that
uses information available in LLVM [25] to statically measure
the performance and some advanced features like bottleneck
analysis and cycle-by-cycle view of basic blocks in a specific
CPU. It supports many of the micro-architectures in X86 and
ARM and is the only static code analyzer that provides a native
implementation for Kunpeng 920 processor. Intel Architecture
Code Analyzer (IACA) [13] is released in 2012 to provide
static throughput and critical path analysis only for Intel micro-
architectures from Haswell (HSW) to Skylake-X (SKX). It
supports micro-ops (µops) level and cycle-by-cycle instruction
simulation, hence enabling it to provide more accurate results
than other ’white-box’ analyzers such as OSACA and llvm-
mca. Unfortunately, IACA is closed-source and announced its
end of life in April 2019.

As for machine-learning-based models, Ithemal [15] is a
’black-box’ basic block throughput predictor that developed
from an LSTM–based deep neural network. It supports only
Intel’s Ivy Bridge, Haswell and Skylake micro-architecture
and it outperforms IACA and llvm-mca by a large margin.
To further investigate the interpretability of such a machine-
learning-based model, DiffTune [16] is presented to learn the
microarchitecture-specific parameters for the x86 simulation
model from coarse-grained end-to-end measurements.

On the other side, full system simulators like gem5 [6],
ZSim [26] et al. provide a detailed simulation of entire
programs from the bottom layer of the processor, including
front-end pipeline structure, memory hierarchies and multi-
core architectures.

B. Microbenchmarking

To alleviate the burden of manually reverse engineering the
corresponding parameters for static code analyzers, it is critical
to develop an efficient way to do microbenchmarking.

Johannes Hofmann, et al., developed iBench [27], a tool
designed to measure the instruction’s latency and throughput.
In order to obtain the execution cycle of instructions, they
embed assembly instructions into a C program. The program
is executed on a fixed CPU frequency so that the number of
execution cycles can be calculated by multiplying execution
time by CPU frequency. To measure throughput, which means
execution cycles in a steady state for a dependency-free
sequence of instructions, they create instruction sequences
in which each instruction does not wait for any register or
memory of previous instructions. And to measure latency, they
create instruction sequences by repeating instructions with the
same operands many times, so that each instruction can’t start
execution until the previous instructions finish execution.

Asmbench [28] is a framework proposed to deduce in-
struction information(latency and throughput) through run-
time instruction benchmarking. The framework, depending
on LLVM’s C-API, does not use any architecture-specified
performance counters. For automation and architecture-
independency, they use LLVM’s intermediate representation

and backend instruction database ”TableGen”. To generate a
benchmark, they create a long chain of instructions to measure
latency, in which each instruction processes the output of
preceding instruction input, and sequences of instructions with
independent input and output to measure throughput. They
describe resource conflicts by comparing the throughput values
when the instruction pairs are run separately and when the
instructions are run in combination.

III. BASIC BLOCK THROUGHPUT PREDICTION

In this section, we will introduce the basic concepts related
to basic block throughput prediction, including fundamental
definitions and assumptions and the port model we build for
static code analyzers.

A. Basic Definitions

1) How to describe an instruction: It is important to
provide formal and correct definitions of the information of
each instruction for static code analyzers to generate accurate
simulation results.

Listing 1. An example of fsub instruction information for Kunpeng 920
processor in OSACA code. The prefix entry in the operands field refers to
the type of a register, i.e. scalar register, vector register, and the shape entry
denotes the way a vector register can be accessed.
- name: fsub

operands:
- class: register

prefix: v
shape: s

- class: register
prefix: v
shape: s

- class: register
prefix: v
shape: s

latency: 5.0
port_pressure: [[1, '45']]
throughput: 0.5
uops: 1

• Operands. Operands of an instruction show what infor-
mation is to be operated on. The most important general
categories of operands are memory address, register and
immediate.

• Latency. Latency is the number of cycles after which the
data is available for another operation. It describes the
execution time of instruction with dependency.

• Throughput. Throughput is the number of cycles after
an issue that another instruction can begin execution.
It describes the execution time of instruction without
dependency.

• Numbers of uops. In modern CPU design, regardless
of AArch64 or X86 micro-architecture, instructions are
divided into one or more uops for execution. The number
of uops denotes the number of these smallest operations
of execution by the processor in an instruction.

• Port pressure. As depicted in Figure 1, in the out-of-
order backend, uops are distributed in different ports. Port
pressure describes which port will an instruction executes
the corresponding uops.

2) How to define the throughput of a basic block: The
throughput of a basic block is generally defined as ”The aver-
age number of cycles for executing a basic block repeatedly in
a steady state”. However, different definitions of basic block
lead to the different notation of throughput, for example, if
basic blocks end up with a jump-related instruction, they are
treated as executing the block in a way that the branch is
always taken; for basic blocks that do not end with a jump-
related instruction, they are treated as unrolling the basic block
for plenty of times to make them executed in a steady state. In
this work, we construct all basic blocks without a jump-related
instruction for convenience, i.e. Listing. 2, and we remark that
introducing a jump-related instruction at the end of the basic
blocks will not affect the accuracy of our results.

Listing 2. An example of a basic block on Kunpeng 920
mov x23, x26
lsl x1, x1, #2
sub x1, x1, x3
add x1, x2, x1, lsl #3
str x1, [sp, #0xa8]

B. Conventional Assumptions

The major capability of static code analyzers is to model
the throughput and dependencies of an assembly code snippet
statically, which means they cannot include the runtime infor-
mation of the execution process, such as register value and
the address a jump-related instruction is targeted for. To this
end, several notoriously common assumptions are introduced
to facilitate our simulations.
• All memory access hit L1 cache. Since the field of

research in static code analyzers is limited to in-core
analysis, we assume that all memory access will be
executed optimally without cache or TLB misses.

• Steady-state execution. The execution of a basic block
normally consists of a warm-up and wind-down phase.
Since we assume a large number of unrolling iterations,
they will not be taken into account for static code
analyzers for simplicity.

IV. METHODOLOGY

A. Architecture of Kunpeng 920

Kunpeng 920 is a 64-bit ARM server microprocessor intro-
duced by HiSilicon in early 2019. Fabricated by TSMC on a
7nm HPC process based on the TaiShan v110 microarchitec-
ture, this chip incorporates 64 cores operating at 2.6 GHz with
a TDP of 180 W. It is empowered with ARM v8.2 instruction
set architecture (ISA) and NEON Advanced SIMD extension.
We take it as an example to analyze the performance of static
code analyzers on AArch64 architectures.

We first analyze the structure of back end pipeline of
Kunpeng 920 based on existing knowledge and our results on
the characteristics such as throughput and port usage of each
instruction. As sketched in Figure 2, we find that each core
in Kunpeng 920 is equipped with one port for integer type
instructions, two ports for integer and jump type instructions,
one port for multi-cycle instructions such as divide and sqrt,
two ports for float and SIMD type instructions and two ports
for memory load/store instructions.

Fig. 2. Overview of the out-of-order execution back end and memory
subsystem components of a Kunpeng 920 core.

B. Modeling Characteristics of Each Instruction

For obtaining an accurate static code analyzer, it is the
cornerstone to get the required information such as latency,
port pressure, throughput and number of uops in every single
instruction by rule and line, we perform several measurement
methods on Kunpeng 920 processor.

As introduced in Section II-B, we generate assembly bench-
marks and data files for iBench and asmbench, respectively.
These two tools enable us to run, measure and compare the
throughput and latency result of each instruction with each
other.

C. Implementating TSV 110 on OSACA

Fig. 3. Mean error rate of OSACA and baseline version of LLVM-MCA on
5 different workloads.

After obtaining the required parameters of each instruction,
we only need to serialize the parameters to a configuration
file as an input of the OSACA program. OSACA will give

an assumption of the basic block’s throughput by calculating
the maximum throughput (TP) and loop-carried dependencies
(LCD). To be specific, instead of building a complete front-
back end model and running a cycle-by-cycle simulation, OS-
ACA simply averages the throughput of each instruction to the
ports it can be launched. For LCD calculation, OSACA will
unroll the basic block twice and run a Dijkstra-like algorithm
to find the longest weighted dependency chain between loops
of the unrolled basic block as the LCD result. These designs
bring about two defects:
• Since the OSACA framework does not provide a full

pipeline model, we cannot add design details under the
hood of modern CPUs such as move elimination, zero/one
idioms, macro-fusion et al. Which is a key step for
improving the accuracy in predicting the throughput of
basic blocks.

• The term TP and LCD have their advantage type of basic
block to provide better throughput assumptions. For basic
blocks that do not have dependencies, since the processor
will launch the instructions to the ports they belonged at
an equal rate, the term TP can faithfully represent the
throughput of each basic block, and the term LCD will
be zero. For basic blocks that have dependencies between
each pair of instructions, since the next instruction will
wait for the previous instruction to complete, the term
LCD can faithfully denote the chaining dependency of
this basic block, thus providing an accurate assumption
of the throughput of a given basic block, and the term TP
will be relatively small. But for the basic blocks that have
part of dependencies, both TP and LCD cannot faithfully
represent the throughput of these basic blocks.

TABLE I
THE ASSEMBLER SYMBOL OF SHIFT SEGMENT IN THE ENCODING OF

’ADD (SHIFTED REGISTER)’ INSTRUCTION

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

Due to the fact that in the framework of OSACA, we cannot
add micro-architecture specifics, the accuracy of this tool is
not able to be improved systematically. As a result, we choose
llvm-mca as the continuously developing framework.

D. Implementating TSV 110 on LLVM-MCA

Although llvm-mca provides native support for Kunpeng
920, as we can see from Figure 3, its accuracy is not quite
desirable. To further investigate the potential of llvm-mca, we
adopt several ways to improve the accuracy of this tool.

1) Correcting the parameters of each instruction: First of
all, we correct the wrong latency number of instructions, such
as fdiv, fmla and fsqrt , in the original llvm-mca version. Later,
we find a wide range of errors in the latency in various types
of instructions. Simple instructions such as add, and, eor, orr

and sub, can be divided into different types: extended register,
immediate and shifted register. The instruction without shift
is also categorized to the shifted register type, such as ’add
x0, x1, x2’, whose encoding format is depicted in Figure 4.
However, the latency number of the instruction with shift and
without shift make a difference, for instance, the latency of
’add x0, x1, x2’ is 1 cycle thus the latency of ’add x0, x1, x2,
lsl #3’ is 2 cycles. The tool llvm-mca confuses these two types
of instructions thus resulting in great error. We notice that
the assembler symbol of the shift segment in the encoding of
’ADD (shifted register)’ instruction has one operand reserved,
as shown in Table I. To this end, we assign this reserved item
to the instruction without shift, and this simple solution works
perfectly with llvm-mca.

2) Move elimination: By doing extensive experiments, we
find that Kunpeng 920 will perform move eliminations on
the move instructions with register-register operands, such as
’mov x1, x2’, by the renamer units. However, not all register-
register move instructions will be eliminated by the processor.
It is a common case that each move elimination will occupy
one elimination slot in the processor. We discover that each
core in Kunpeng 920 is equipped with one elimination slot,
which means it can only perform one move elimination on
each cycle. We implement move elimination feature on llvm-
mca to provide better accuracy results.

V. RESULT AND ANALYSIS

In this section, we evaluate the effectiveness of our methods
by validating the accuracy of the optimized llvm-mca tool on
different metrics. We use a server machine with one Kunpeng
920 socket containing 96 cores for configuring and running
experiments as well as collecting and analyzing the data. In
addition, this machine has 188 GB of RAM and the OS id
Ubuntu 20.04.5 with Linux kernel 5.4.0-128.

A. Evaluation metrics
1) MAPE: The mean absolute percentage error (MAPE),

also known as mean absolute percentage deviation (MAPD),
is a measure of prediction accuracy of a forecasting method in
statistics. It usually expresses the accuracy as a ratio defined
by the formula:

MAPE(B) =
1

|B|
·
∑

(m,p)∈B

|m− p|
m

. (1)

In our experiments, B denotes the dataset of basic blocks from
an application, m means the measured result of a basic block
from BHive and p means the predicted result of a basic block
from llvm-mca.

2) Kendall’s tau: Kendall’s tau is a statistic used to mea-
sure the ordinal association between two measured quantities,
which has the following formula:

τ(B) =
(Nc)− (Nd)(
|B|
2

) , (2)

where Nc denotes the number of concordant pairs and Nd
denotes the number of discordant pairs.

Fig. 4. The encoding of ’ADD (shifted register)’ instruction in Armv8-A Instruction Set Architecture.

Fig. 5. Workflow of executing, extracting, collecting and analyzing basic blocks, using OpenBLAS as an example.

B. Benchmarks: Basic Blocks from Real World Applications

TABLE II
SOURCE APPLICATIONS OF BENCHMARK BASIC BLOCKS

Application Domain # Basic Blocks

OpenBLAS High Performance 6336
FFTW High Performance 15616
LAPACK(dgetrf) High Performance 6142
Eigen(MM+MV) Scientific Computing 6127
Clang Compiler 35598
Redis Database 5716
GZip Compression 3749
TensorFlow Machine Learning 161450
Embree Ray Tracing 7272
FFmpeg Multimedia 33485
Total 281491

Table II shows the applications which we chose to collect
basic blocks for benchmarking. We select these applications
from a diverse range of domains to represent real-world
workloads [29]. And we‘re more focused on high-performance
applications, e.g., Fastest Fourier Transform in the West
(FFTW) and Linear Algebra PACKage (LAPACK).

We used the highest Kenpeng 920 optimization settings (-
O3, NEON SIMD, et al.) to compile all applications. It is
particularly important to these High-performance applications
like FFTW.

We implement the benchmarks building procedure in three
steps:

First, we dynamically capture every assembly instruction
executed by the process with the help of a runtime code
manipulation system named DynamoRIO [30].

TABLE III
COMPARISON OF DIFFERENT APPLICATIONS LLVM-MCA RESULTS ON

BHIVE

llvm-mca-optimized llvm-mca-baseline
Application MAPE Kendall MAPE Kendall

OpenBLAS 7.52% 0.7189 7.82% 0.2180
OpenBLAS level1 ddot 8.15% 0.7453 12.29% 0.3153
OpenBLAS level2 dgemv 8.99% 0.7531 20.45% 0.3158
OpenBLAS level3 zgemm 12.20% 0.7562 31.24% 0.3197
FFTW 12.93% 0.7396 30.86% 0.1851
LAPACK(dgetrf) 11.98% 0.7367 30.73% 0.3010
Eigen(MM) 15.31% 0.7071 143.05% 0.2406
Eigen(MV) 14.75% 0.7000 27.94% 0.2305
Clang 12.66% 0.7224 30.91% 0.2166
Redis 26.05% 0.5941 53.72% 0.1894
GZip 12.11% 0.5626 43.09% 0.2247
TensorFlow 9.33% 0.7022 37.42% 0.0712
Embree 12.71% 0.6442 45.16% 0.1932
FFmpeg 13.80% 0.6770 29.82% 0.2373
AVERAGE 13.32% 0.6926 35.84% 0.2404

We use the official benchmarking input to simulate the
realistic execution, except for FFmpeg and Gzip. We tested
Eigen on two sparse linear algebra workloads: sparse matrix-
matrix multiplication (Eigen MM) and sparse matrix-vector
multiplication (Eigen MV), as shown in Figure 6. We test
LAPACK and OpenBLAS at the same level-3 matrix-matrix
multiplication.

As shown in the yellow part of Figure 5, capturing raw
assembly code is extremely time-consuming and storage-
consuming. For example, collecting 20s OpenBLAS program
data will need about 40 hours to analyze and 1 TB of storage
to store the result.

Fig. 6. Heatmaps of optimized version of llvm-mca for basic blocks with a measured throughput of less than 10 cycles/iteration on Kunpeng 920, the green
dash line in each figure denotes 10% error rate and the purple dash line denotes 20% error rate.

In the second step, we use an in-time method of processing
assembly code instead of saving all assembly code to erase
huge storage consumption. We slice the assembly code into
basic blocks with jump and system instructions and generate
datasets by filtering basic blocks not supported by BHive and
de-duplication.

We extracted a large number of diverse basic blocks in
Clang/LLVM (compiler) and TensorFlow because they are
written with sophisticated algorithms and data structures. In
contrary to general purpose applications, highly optimized
applications: FFTW, Eigen and OpenBLAS run handwritten
assembly loops many times, hence the kernel basic blocks of
loops will be repeatedly collected.

Third, we compute llvm-mca, OSACA results on the basic
block dataset in one day in a parallel scheme. And compare
it with the standard result of BHive. We record the detailed
data in a readable Excel file, which will help researchers to
reproduce the experimental results and further research. We
have opensourced our basic block dataset, and it is available
to download at Github3.

3https://github.com/Kirrito-k423/BHive-Prediction-Compare

We evaluate llvm-mca in version 13.0.0 as a baseline for
our experiments and compare the results with our optimized
version, shown in Table III. Our optimized version provides
more accurate predictions in all cases. The MAPE is much
lower compared to the baseline version of llvm-mca, and
Kendall’s tau coefficient is also always higher than the baseline
version of llvm-mca. In most cases, our optimized version
outperforms the baseline version by a large margin.

We also draw heatmaps to compare our optimized llvm-mca
and BHive result on Kunpeng 920 shown in Figure 6. We
remark that our optimized version significantly fixed the large
predicted throughput in Clang, Redis, and HPC applications
and balanced the low predicted throughput in Tensorflow.

As presented in Table III, simulation results in 14 different
applications show that our optimizations on llvm-mca translate
to a 22.52% improvement on average MAPE. And our tool
achieves 86.7% accuracy in predicting the throughput of
all basic blocks, which offers a great advance for system
developers to statically predict the throughput of basic blocks
with higher credibility.

VI. CONCLUSION

In this work, we implement TSV 110 micro-architecture to
two state-of-the-art static code analyzers, OSACA and llvm-
mca. After comparing with OSACA tool in terms of accuracy
and extendibility, we choose llvm-mca as a prototyping frame-
work for further development. Also, we build a highly efficient
framework to run, collect and post-process the basic blocks
for validating our methods, along with an accurate runtime
environment to obtain measured throughput as a benchmark.
By exploiting the micro-architecture information of Kunpeng
920 processor and implementing them within llvm-mca, we
achieve an 86.7% accuracy in predicting the throughput of all
basic blocks, which is better than any other ’white-box’ static
code analyzers in AArch64 architecture.

ACKNOWLEDGMENT

We are thankful to the reviewers for evaluating this study
and providing valuable feedback. This work is partially sup-
ported by the National Natural Science Foundation of China
(Grant No. 62102389).

REFERENCES

[1] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals of
the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] A. Fog. The microarchitecture of intel, amd, and via cpus. [Online].
Available: https://www.agner.org/optimize/microarchitecture.pdf

[3] L. Eeckhout, “Computer architecture performance evaluation methods,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–145,
2010.

[4] J. E. Dayhoff, Neural network architectures: an introduction. Van
Nostrand Reinhold Co., 1990.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[7] R. C. Lozano, M. Carlsson, F. Drejhammar, and C. Schulte, “Constraint-
based register allocation and instruction scheduling,” in International
Conference on Principles and Practice of Constraint Programming.
Springer, 2012, pp. 750–766.

[8] A. McGovern and J. Moss, “Scheduling straight-line code using re-
inforcement learning and rollouts,” Advances in neural information
processing Systems, vol. 11, 1998.

[9] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta
optimization: Improving compiler heuristics with machine learning,”
ACM sigplan notices, vol. 38, no. 5, pp. 77–90, 2003.

[10] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated instruction stream throughput prediction for intel and amd
microarchitectures,” in 2018 IEEE/ACM performance modeling, bench-
marking and simulation of high performance computer systems (PMBS).
IEEE, 2018, pp. 121–131.

[11] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
throughput and critical path analysis of x86 and arm assembly kernels,”
in 2019 IEEE/ACM Performance Modeling, Benchmarking and Simula-
tion of High Performance Computer Systems (PMBS). IEEE, 2019, pp.
1–6.

[12] llvm-mca — llvm machine code analyzer. [Online]. Available:
https://llvm.org/docs/CommandGuide/llvm-mca.html

[13] Intel architecture code analyzer user’s guide. [Online]. Available:
https://software.intel.com/content/dam/develop/external/us/en/documents
/intel-architecture-code-analyzer-3-0-users-guide-157552.pdf

[14] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lar-
tigue, “Cqa: A code quality analyzer tool at binary level,” in 2014
21st International Conference on High Performance Computing (HiPC).
IEEE, 2014, pp. 1–10.

[15] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using
deep neural networks,” in International Conference on machine learning.
PMLR, 2019, pp. 4505–4515.

[16] A. Renda, Y. Chen, C. Mendis, and M. Carbin, “Difftune: Optimizing
cpu simulator parameters with learned differentiable surrogates,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 442–455.

[17] A. Abel and J. Reineke, “uica: Accurate throughput prediction of basic
blocks on recent intel microarchitectures,” in Proceedings of the 36th
ACM International Conference on Supercomputing, 2022, pp. 1–14.

[18] Kunpeng 920 chipset. [Online]. Available:
https://www.hisilicon.com/en/products/Kunpeng/Huawei-
Kunpeng/Huawei-Kunpeng-920

[19] Taishan v110 - microarchitectures - hisilicon. [Online]. Available:
https://en.wikichip.org/wiki/hisilicon/microarchitectures/taishan v110

[20] J. Treibig and G. Hager, “Introducing a performance model for
bandwidth-limited loop kernels,” in International Conference on Parallel
Processing and Applied Mathematics. Springer, 2009, pp. 615–624.

[21] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying perfor-
mance bottlenecks of stencil computations using the execution-cache-
memory model,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, 2015, pp. 207–216.

[22] J. Seiferth, C. Alappat, M. Korch, and T. Rauber, “Applicability of
the ecm performance model to explicit ode methods on current multi-
core processors,” in International Conference on High Performance
Computing. Springer, 2018, pp. 163–183.

[23] S. Kronawitter and C. Lengauer, “Optimization of two jacobi smoother
kernels by domain-specific program transformation,” in Proceedings of
the 1st International Workshop on High-Performance Stencil Computa-
tions (HiStencils), 2014, pp. 75–80.

[24] C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein,
and T. Wettig, “Execution-cache-memory modeling and performance
tuning of sparse matrix-vector multiplication and lattice quantum chro-
modynamics on a64fx,” Concurrency and Computation: Practice and
Experience, p. e6512, 2021.

[25] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[26] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, no. 3, pp. 475–486, 2013.

[27] J. Hofmann, “ibench-instruction benchmarks, 2017,” URL https://github.
com/RRZE-HPC/ibench.

[28] J. Hammer, G. Hager, and G. Wellein, “Ooo instruction benchmarking
framework on the back of dragons,” SC18 SRC Poster (in review), 2018.

[29] Y. Chen, A. Brahmakshatriya, C. Mendis, A. Renda, E. Atkinson,
O. Sỳkora, S. Amarasinghe, and M. Carbin, “Bhive: A benchmark suite
and measurement framework for validating x86-64 basic block perfor-
mance models,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2019, pp. 167–177.

[30] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’03. USA: IEEE Computer
Society, 2003, p. 265–275.

