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A B S T R A C T

First-principles time-dependent density functional theory (TDDFT) is a powerful tool to accurately describe
the excited-state properties of molecules and solids in condensed matter physics, computational chemistry,
and materials science. However, a perceived drawback in TDDFT calculations is its ultrahigh computational
cost (𝑁5 ∼ 𝑁6) and large memory usage (𝑁4) especially for plane-wave basis set, confining its applications
to large systems containing thousands of atoms. Here, we present a massively parallel implementation
of linear-response TDDFT (LR-TDDFT) and accelerate LR-TDDFT in two different aspects: (1) numerical
algorithms on the X86 supercomputer and (2) optimizations on the heterogeneous architecture of the new
Sunway supercomputer. Furthermore, we carefully design the parallel data and task distribution schemes to
accommodate the physical nature of different computation steps. By utilizing these two different methods, our
implementation can gain an overall speedup of 10x and 80x and efficiently scales to large systems up to 4096
and 2744 atoms within dozens of seconds.
1. Introduction

First-principles Kohn–Sham density functional theory (DFT) [2]
has extensive applications in condensed matter physics, computational
chemistry and materials science. To enable the computation-based de-
sign of new materials and predict their peculiar properties in different
types of fields with high accuracy, developing large-scale DFT and
time-dependent DFT (TDDFT) [3] methods both in ground-state and
excited-state simulations is of significant impact.

In particular, TDDFT, as one of the most widely used and powerful
computational tools for exploring excited-state properties, has inspired
a variety of imaginative methods designed for various purposes. Among
them, real-time TDDFT [4–6] focuses on dynamic evolution processes
in the real-time domain, offering a unique ab-initio method applicable
for exploring particle interactions, especially under strong fields or
in various spectral regions. However, it comes with a higher compu-
tational cost. Therefore, with the assistance of perturbation theory,
many methods opt to address the problem from the perspective of
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specifically focuses on the optimization and acceleration on the new Sunway heterogeneous platform.
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the frequency domain. For instance, damped response theory [7–9],
by solving the standard response equation then allowing for absorp-
tion, could directly applies to high-frequency or high-density-of-states
spectral regions, making it the best choice for X-ray absorption spec-
troscopy (XAS) spectra and plasmonic systems. Additionally, the most
common formula to adopt excited-state properties, which evaluates
exactly the many-body Schrödinger equation of the time-dependent
linear response function formulated in the frequency domain, refers to
as linear-response TDDFT (LR-TDDFT).

Within LR-TDDFT, the Casida equation [10] is the most commonly
used formula to describe the excitation energy and corresponding wave-
functions. To solve the Casida equation, the most time-consuming parts
in the LR-TDDFT calculations can be summarized as two parts, one is to
explicitly construct the LR-TDDFT Hamiltonian with the complexity of
(𝑁5

𝑒 ) with respect to the number of electrons in the system𝑁𝑒, and the
other is to diagonalize the LR-TDDFT Hamiltonian with the complexity
of (𝑁6

𝑒 ). As the system expands, the computational and memory
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cost of LR-TDDFT calculations in a general CPU platform becomes
prohibitively expensive, especially on large complete basis sets, such as
plane-wave basis sets. Therefore, exploring the excited-state properties
of systems with thousands of atoms using the LR-TDDFT method is still
a very tough task.

The state-of-the-art LR-TDDFT calculations in CP2K with Gaussian-
type orbitals (GTOs) allow the study of large-scale systems including
aluminosilicate imogolite nanotubes, in addition to surface and bulk
vacancy defects in MgO and HfO2 with nearly 1000 atoms [11]. How-
ver, the above software is all implemented under localized basis sets,
hich are not commensurate with the desired accuracy especially when

he system is complex. In particular, there has been no breakthrough
or a long time with regard to the standard plane-wave basis set because
f ultra-high computational and memory cost in the LR-TDDFT calcu-
ations, which hinders excited-state electronic structure exploration for
arge-scale periodic systems containing thousands of atoms.

Fortunately, this situation can be immensely improved thanks to the
ppearance of new algorithmic methods and modern high performance
omputing (HPC) facilities. For example, low-rank methods like density
itting approximation, also known as the resolution of identity algo-
ithms [12], can help not only accelerate the construction of LR-TDDFT
amiltonian but also significantly lower the memory cost. Furthermore,

he iterative subspace eigensolver algorithms, such as Davidson [13]
nd LOBPCG [14], have been successfully applied to simulate excited-
tate properties by giving an estimation of the lowest 𝑘 eigenvalues with
favorable computational cost of (𝑘𝑁4

𝑒 ) (𝑘 is the number of desired
owest eigenvalues and corresponding eigenvectors). Given all these
dvances, the large-scale excited-state calculations of the LR-TDDFT
ramework with plane-wave basis set become reachable.

In this work, we present a massively parallel implementation of
inear-response TDDFT (LR-TDDFT) and accelerate LR-TDDFT in two
ifferent aspects in the following:

• Numerical algorithms such as K-Means based parallel interpola-
tive separable density fitting (ISDF) [1,15], which provides us
an efficient and accurate way to reduce the ultra-high computa-
tional and memory cost during the construction of Hamiltonian
in the simulation of LR-TDDFT. Also, we reduce the computa-
tional and memory cost by implicitly constructing and iteratively
diagonalizing the Hamiltonian.

• Heterogeneous architecture of the new Sunway supercom-
puter that harnesses the power of numerous computing processor
units (CPEs) to deliver remarkable computational capabilities.

oreover, we perform extensive numerical experiments on the Cori
upercomputer, the Cray XC40 system in the National Energy Research
cientific Computing Center (NERSC), and the new Sunway supercom-
uter, the successor of the Sunway TaihuLight supercomputer.

The main contributions of this work can be summarized as follows:

(1) A series of parallel algorithms, including K-Means based low-
rank decomposition, iterative eigenvalue solver and implicit
Hamiltonian method are implemented to reduce the computa-
tion and memory cost, expand the system size and accelerate
the computation steps in the LR-TDDFT calculations.

(2) We present a highly efficient implementation of LR-TDDFT on
the new Sunway supercomputer. Our approach incorporates
innovative techniques that effectively utilize the architecture of
this heterogeneous system, resulting in significant speedup for
LR-TDDFT.

(3) We demonstrate that with our algorithms along with parallel
implementations and optimizations, we can study the three-
dimensional semiconducting silicon systems with 4096 atoms,
this result exceeds the current state of the art both in parallel
scale and the system scale.

(4) Under extensive experiments, we show that our methods can
achieve high scalability, with regard to both strong scaling and
2

weak scaling.
(5) We have open-sourced our software at https://bitbucket.org/
berkeleylab/scales/src/lrtddft/ https://bitbucket.org/ berkeley-
lab/scales/src/lrtddft/ in the hope that our approach can pro-
vide insight for relevant high-performance applications with the
same computational characteristics.

. Related works

Although different types of basis sets can be used in the DFT and
DDFT calculations, plane-wave (PW) basis set [16] in the broadest
ense seems current to be the most advantageous for complex periodic
olid systems in condensed matter physics and materials science, com-
ared to small localized atomic orbitals (AO) [4] basis set, which is
ore suitable for molecular systems in quantum chemistry. In particu-

ar, PW basis set is complete and allows a faithful analytical evaluation
f the total energy, atomic forces, and other physical quantities. But
he computational cost of DFT within plane-wave basis set increases
apidly with respect to the number of electrons in the systems because
he number of PW basis set is much more expensive than the case of
mall localized AO basis sets (𝑁PW ≈ 100 × 𝑁AO), which hinders its
ractical applications to large systems containing thousands of atoms.
or example, traditional ground-state DFT calculations with plane-wave
asis set are exorbitantly expensive due to (𝑁3

𝑒 ) scaling computational
nd memory complexity with respect to the number of electrons 𝑁𝑒 ≈
000 [17].

Although it is quite difficult for this software with plane-wave basis
o expand to large systems, large-scale TDDFT excited-state electronic
tructure calculations within small localized basis sets (like atomic
nd Gaussian basis set) for molecular systems have been implemented
ecently, such as NWChem [21] and QChem [22]. In detail, as shown in
able 1, NWChem [23] was used to study the excited-state properties
f the system containing 120 atoms with 1840 6-311G Gaussian basis
et (Au20Ne100), and in that work, NWChem efficiently scales to 2250
PU cores on the CINECA supercomputer.

For periodic solid systems, the GW approximation derived from the
reen’s function has also become a powerful formalism for studying

ingle-electron excitations of molecules and the quasi-particle band
aps of solids within many-body effects. Recently, large-scale GW
alculations containing 2742 atoms within the plane-wave basis set in
erkeleyGW [20] have also been implemented in the Summit super-
omputer.

. Theoretical algorithms of LR-TDDFT

The LR-TDDFT calculations consist of two parts: (1) constructing
amiltonian and (2) diagonalizing Hamiltonian.

The Hamiltonian we need to construct in LR-TDDFT calculations has
he following numerical structure:

=
[

𝐷 + 2𝑉Hxc 2𝑊Hxc
−2𝑊Hxc −𝐷 − 2𝑉Hxc

]

, (1)

where 𝐷
(

𝑖𝑣𝑖𝑐 , 𝑗𝑣𝑗𝑐
)

=
(

𝜀𝑖𝑐 − 𝜀𝑖𝑣
)

𝛿𝑖𝑣𝑗𝑣𝛿𝑖𝑐 𝑗𝑐 , is an 𝑁𝑐𝑣 × 𝑁𝑐𝑣 (𝑁𝑐𝑣 =
𝑁𝑐 ×𝑁𝑣, in which 𝑁𝑐 is the number of conduction orbitals, 𝑁𝑣 is the
number of valence orbitals and 𝛿 denotes Dirac delta function) matrix.
These orbital energies (𝜀𝑖𝑣 (𝑖𝑣 = 1,… , 𝑁𝑣) and 𝜀𝑖𝑐 (𝑖𝑐 = 1,… , 𝑁𝑐 )) and
corresponding orbitals are typically obtained via ground-state Kohn–
Sham DFT calculations. The 𝑉𝐻𝑥𝑐 and 𝑊𝐻𝑥𝑐 matrices represent the
Hartree-exchange–correlation integrals.

With the Tamm–Dancoff approximation (TDA) [24], 𝑊Hxc matrix is
neglectable so the Hamiltonian matrix has the form

𝐻 = 𝐷 + 2𝑉Hxc. (2)

In discrete cases, 𝑉Hxc is defined as the multiplication of the matrix
𝑓Hxc and transposed block face-splitting product (or Block column-
wise version of the Khatri–Rao product) matrix 𝑃𝑣𝑐 = {𝜓𝑖𝑣 (𝐫)𝜓𝑖𝑐 (𝐫)}.

𝜓𝑖𝑣 (𝐫) and 𝜓𝑖𝑐 (𝐫) stand for the valence and conduction orbitals in real

https://bitbucket.org/berkeleylab/scales/src/lrtddft/
https://bitbucket.org/berkeleylab/scales/src/lrtddft/
https://bitbucket.org/berkeleylab/scales/src/lrtddft/
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Table 1
Performance comparison of massively parallel excited-state simulation software packages on modern heterogeneous supercomputers, involving different HPC codes (NWChem, CP2K,
PWDFT, and BerkeleyGW) within different types of basis sets (Plane-wave (PW), Gaussian and mixed Gaussian and plane wave (GPW)).

HPC software Year Theory Basis set Method System #atoms Architecture Reference

NWChem 2016 LR-TDDFT Gaussian Explicit Water molecules 1,890 Intel Xeon [18]
CP2K 2019 LR-TDDFT GPW Explicit MgO; HfO2 1,000 Intel Xeon [11]
PWDFT 2019 RT-TDDFT PW Implicit Silicon 1,536 V100 GPU [19]
BerkeleyGW 2020 GW PW Explicit Silicon 2,742 V100 GPU [20]
PWDFT 2023 LR-TDDFT PW Implicit Silicon; Graphene 4,096 Intel Xeon This work
Table 2
Computation and memory complexity for constructing and diagonalizing the LR-TDDFT Hamiltonian matrix with the naïve LR-TDDFT code.
LR-TDDFT Computation Memory

Constructing Hamiltonian

Face-splitting product of conduction-valence orbitals (𝑁𝑣𝑁𝑐𝑁𝑟) (𝑁𝑣𝑁𝑐𝑁𝑟)
Fast fourier transform (FFT) (𝑁2

𝑣𝑁
2
𝑐𝑁𝑟) (𝑁𝑣𝑁𝑐𝑁𝑟)

General matrix multiply (GEMM) (𝑁2
𝑣𝑁

2
𝑐𝑁𝑟) (𝑁2

𝑣𝑁
2
𝑐 )

𝑓𝐻𝑥𝑐 kernel (𝑁𝑣𝑁𝑐𝑁𝑟) (𝑁𝑣𝑁𝑐𝑁𝑟)

Diagonalizing Hamiltonian ScaLAPACK::Syevd (𝑁3
𝑣𝑁

3
𝑐 ) (𝑁2

𝑣𝑁
2
𝑐 )
4
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Algorithm 1 The pseudocode for the LR-TDDFT calculations.
Input: Ground-state energies 𝜖𝑖, wavefunctions 𝜓𝜇(𝐫) and 𝜓𝜈(𝐫)

distributed according to the row index.
1: for each MPI process do
2: Initialize 𝑃𝑣𝑐 (𝑟) = {𝜓𝜇(𝑟)𝜓𝜈 (𝑟)} in real space;
3: Carry MPI_Alltoall to wavefunctions 𝛹 to transfer data distribu-

tion scheme from row block partition to column block partition;

4: Transfer 𝑃𝑣𝑐 (𝑔) into reciprocal space via fast Fourier transform
(FFT);

5: Apply the Hartree potential operator in reciprocal space and
transfer it back into real space 𝑣H(𝑔)𝑃𝑣𝑐 (𝑔);

6: Carry out MPI_Alltoall to wavefunctions 𝛹 to transfer data dis-
tribution scheme from column block partition to row block
partition;

7: Compute the Hartree-exchange-correlation integrals 𝑉Hxc in real
space via general matrix multiply (GEMM);

8: Summarize 𝑉Hxc within all MPI tasks by MPI_Allreduce;
9: end for

10: Obtain Hamiltonian by computing the difference of Kohn-Sham
energy eigenvalues;

11: Diagonalize the Hamiltonian;
Output: Excited-state energies {𝜆𝑖} and wavefunctions {𝑥𝑖𝑗}

space (
{

𝐫𝐢
}𝑁𝑟
𝑖=1, 𝑁𝑟 denotes the number of real space grid points during

he calculations).

Hxc = 𝑃 †
𝑣𝑐𝑓Hxc𝑃𝑣𝑐 , (3)

ere 𝑓Hxc is the kernel of Hartree-exchange–correlation operator

Hxc
(

𝐫, 𝐫′
)

= 𝑓H
(

𝐫, 𝐫′
)

+ 𝑓xc[𝑛]
(

𝐫, 𝐫′
)

= 1
|𝐫 − 𝐫′|

+
𝛿𝑉xc[𝑛](𝐫)
𝛿𝑛 (𝐫′)

,
(4)

here 𝑛(𝐫) = ∑𝑁𝑣
𝑖=1

|

|

𝜓𝑖(𝐫)||
2 encodes the electronic density and 𝑓𝑥𝑐 is the

xchange–correlation potential in LR-TDDFT calculations.
After constructing the Hamiltonian matrix, like other conventional

S-DFT calculations, we need to diagonalize it explicitly to get the
xcitation wavefunctions X and corresponding excitation energies 𝜆. In
ur naïve implementation, diagonalization is realized by SYEVD routine
n ScaLAPACK [25] with ultra-high complexity of (𝑁3

𝑣𝑁
3
𝑐 ) ∼ (𝑁6

𝑒 ).
e explain our implementation in Algorithm 1.
We remark that 𝑁𝑟 is generally much larger (1000×) than 𝑁𝑒 and

𝑣 ≈ 𝑁𝑐 ≈ 𝑁𝑒 for a large normalized plane-wave basis set. And we
ummarize the computational and memory cost of constructing and
3

iagonalizing Hamiltonian in Table 2. i
. Parallel implementation

.1. Basic design

To fully take advantage of computing resources provided by modern
PC systems, we carefully design a two-level MPI-OpenMP hybrid
arallelization strategy along with different forms of data distribution
ashions in LR-TDDFT implementation depending on their physical
ature.

Our method is written within PWDFT (Plane Wave Density Func-
ional Theory) [26], which forms one separate component of the
assively parallel quantum chemistry calculations software package
GDFT (Discontinuous Galerkin Density Functional Theory) [27]. For

implicity in implementation and computational scalability, we apply
he local-density approximation (LDA) [28] functional in the KS-DFT
nd LR-TDDFT calculations.

.2. Parallel data distribution formula

As we can see from Fig. 1, we design three data distribution schemes
or the naïve LR-TDDFT implementation. The first one is column block
artition, which means each column of wavefunctions 𝛹 is distributed
o each MPI process according to its column index. This data distri-
ution scheme is approvingly efficient to apply Hartree operator since
ach MPI task is able to perform fast Fourier transform (FFT) indepen-
ently in reciprocal space. The second one is row block partition, which
eans each row of wavefunctions 𝛹 is distributed to each MPI process

ased on its column index. This distribution strategy benefits the cal-
ulation of the face-splitting product and matrix–matrix multiplication
GEMM). We remark that we use MKL [29] and FFTW [30] to carry out
EMM and FFT operations respectively in our implementation.

We obtain the ground-state wavefunctions from PWDFT, which is
tored with the column block partition theme. Then we transform the
avefunctions to row block partition theme to apply the face-splitting
roduct. For the Hamiltonian matrix, we first apply the Hartree op-
rator, which is diagonal in reciprocal space, and then apply the
xchange–correlation operator, which is diagonal in real space. To
acilitate the calculation steps according to their peculiarities, we use
ast Fourier transform (FFT) to convert the 𝑃𝑣𝑐 from real space to the
̃𝑣𝑐 in reciprocal space (

{

𝐆𝐢
}𝑁𝑔
𝑖=1, 𝑁𝑔 indicates grid points in reciprocal

pace). To apply Fourier transform, the conversion from row block
artition to column block partition is carried by MPI_Alltoall routine
s demonstrated in Fig. 1(a) and (b). When we finish constructing the
amiltonian, we need to diagonalize it to obtain excitation energies
nd corresponding wavefunctions. For the diagonalization step, the
wo-dimensional block-cyclic partition theme as sketched in Fig. 1(c)
s the most advantageous data distribution type to perform direct
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𝑛

Fig. 1. Parallel data and task distribution schemes of LR-TDDFT. (a) column block
partition for FFT, (b) row block partition for GEMM and face face-splitting product (c)
2-D parallelization for diagonalization (SYEVD). The parallel scheme is given with 8
wavefunctions and 4 computing processors as examples.

Fig. 2. Data reduction optimization, take the first row of Matrix 𝑉Hxc as an example.

diagonalization via the SYEVD routine in the ScaLAPACK library. We
perform the data redistribution routine pdgemr2d provided by the
ScaLAPACK library to convert the data distribution theme from the row
block partition to the two-dimensional block-cyclic partition

4.3. Overlap of computation and communication

As shown in lines 8 and 9 of Algorithm 1, after we perform Gen-
eral Matrix Multiply (GEMM) to get the Hartree-exchange–correlation
integrals in every single process,

MPI_Allreduce is used to gather 𝑉Hxc in all MPI tasks. There is data
dependence because MPI_Allreduce must wait for GEMM to finish com-
putation, in particular when the size of a matrix is large, thus disrupting
the overlapping of computation and communication. When the studied
system’s size increases, although GEMM can be calculated via MKL in
a very efficient way, both GEMM and MPI_Allreduce will introduce
much time cost. To fully accelerate the process of LR-TDDFT, we make
attempts to overlap the step of computation and communication.

First, by analyzing the data partition of LR-TDDFT, we find that
in order to calculate the difference between the energy eigenvalues of
Kohn–Sham function, not all MPI tasks need to store the entire 𝑉Hxc
matrix. Therefore, we optimize the data partitioning method shown in
Fig. 2. Then we get the result of GEMM, each MPI task only needs to
store a part of the 𝑉Hxc matrix.

The above attempt brings two benefits. First of all, this new data
partitioning method can reduce the memory usage of the MPI process.
Second, we do not need to execute MPI_AllReduce to collect the entire
𝑉Hxc matrix but use MPI_Reduce to transmit a part of the 𝑉Hxc matrix
to each MPI task according to the index.

As a result of this attempt, we have eliminated part of the data
dependence. In more detail, we can divide the matrix into small pieces
4

Fig. 3. Pipeline approach of GEMM and MPI_Reduce.

and manually perform GEMM on these small parts. The basic flow of
GEMM and reduction is shown in Fig. 3. Once the result of each block is
obtained, we can immediately reduce the block matrix to each MPI task
through MPI_Reduce. Then, we will allocate the entire 𝑉Hxc distributed
in each MPI task.

5. Optimizations on numerical algorithm aspect

As we can see from Table 2, the Hamiltonian matrix occupies a large
fraction of the memory footprint. For example, when 𝑁𝑐 = 𝑁𝑣 = 256
and double-precision is used during the calculation, each process will
hold a matrix of 32 GB, which brings about ultra-high computation
cost and communication overhead, hence limiting the studied system
size to expand. In this section, we discuss our approach to accelerate
LR-TDDFT by implementing numerical algorithms that leverage the
inherent properties of low-rank matrices in LR-TDDFT.

5.1. Low-rank approximation in LR-TDDFT by ISDF

As shown in Algorithm 1, all computational operations are inher-
ently based on the two-electron integrals

{

𝜌𝑖𝑗 (𝐫) ∶= 𝜓𝑖(𝐫)𝜙𝑗 (𝐫)
}

1≤𝑖≤𝑚,1≤𝑗≤
(orbital pair product). But when we look into the matrix 𝑃𝑣𝑐 (𝑟) con-
structed from valence and conduction orbitals 𝛹 and 𝛷, the information
beneath it is commonly markedly redundant. In other words, we can
use several much smaller matrices to represent it. So exploiting the
numerical rank deficiency of the pair products is the cornerstone to
reducing the time cost of this operation and all the related computing-
intensive operations. Several low-rank tensor approximations have
been proposed, including the Resolution-of-the-identity (RI) [31] ap-
proximation and the interpolative separable density fitting (ISDF) [32]
decomposition. The key spirit of these low-rank approximations is to
carefully choose a set of interpolation points 𝑁𝜇 (𝑁𝜇 = 𝑐𝑁𝑟, where
c is a small preconstant) from all the real space grid points 𝑁𝑟 in
advance, which can give an accurate representation of all orbital-pair
products. So we can represent 𝜓𝑖(𝐫)𝜙𝑗 (𝐫) with the multiplication of two
matrices. One matrix can be viewed as the expansion coefficients matrix
𝐶 𝑖𝑗𝜇 1≤𝜇≤𝑁𝜇

(a third-order tensor), whose every single row is extracted
from the two-electron integrals matrix according to interpolation points
�̂�𝜇 for 𝜇 = 1,… , 𝑁𝜇 . The other matrix can be viewed as numerical
auxiliary basis functions (ABFs)

{

𝜁𝜇(𝐫)
}

1≤𝜇≤𝑁𝜇
, for which we will refer

to as the interpolating vectors in the rest of the article, so that

𝜓𝑖(𝐫)𝜙𝑗 (𝐫) ≈
𝑁𝜇
∑

𝜇=1
𝜁𝜇(𝐫)𝐶 𝑖𝑗𝜇 . (5)

Furthermore, the central idea of the ISDF decomposition different
from other low-rank tensor approximations is to decompose the third-
order tensor 𝐶 𝑖𝑗 again, into a transposed block face-splitting
𝜇 1≤𝜇≤𝑁𝜇
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Fig. 4. The ISDF decomposition and its parallel strategy for LR-TDDFT. Each process
holds a segment of orbital pairs and auxiliary basis functions, and every process holds
the same copy of coefficients.

product of two matrices 𝐶 𝑖𝑗𝜇 = 𝜓𝑖
(

�̂�𝜇
)

𝜙𝑗
(

�̂�𝜇
)

. The decomposition
scheme of ISDF is shown in Fig. 4.

Thus the Hamiltonian matrix can be rewritten as:

𝐻 = 𝐷 + 2𝐶†(𝑉𝐻𝑥𝑐𝐶), (6)

under ISDF with the auxiliary basis set, the Hartree exchange–
correlation integrals 𝑉𝐻𝑥𝑐 can be projected in this form:

𝑉𝐻𝑥𝑐 = 𝜁†𝜇 (𝑓Hxc𝜁𝜇). (7)

The parentheses in Eqs. (6) and (7) represent the order of multipli-
cation.

The time cost of constructing the Hamiltonian (not including ISDF
procedure, which we will discuss later) is now significantly reduced to
(𝑁r𝑁2

𝜇 +𝑁𝜇𝑁2
v𝑁

2
c ). Under the ISDF basis set, the first term accounts

for the time cost of computing 𝑉Hxc and the second term is the cost of
three matrix multiplications and FFTs.

In Section 5.1.1 and 5.1.2, we will discuss the main procedures in
the ISDF approximation as a background of our improved method.

5.1.1. Selecting the interpolation points of ISDF
Consider a discretized matrix 𝑍 of size 𝑁𝑟 ×(𝑁𝑐𝑣) and find 𝑁𝜇 rows

of 𝑍 so that the remaining rows of 𝑍 can be approximated by the
linear combination of the selected 𝑁𝜇 rows. This procedure is so-called
interpolative decomposition, and one traditional way is using the ran-
domized sampling QR factorization with column pivoting (QRCP) [33]
from real space grid points to attain a low-rank approximation of 𝑍

𝑍𝑇𝛱 = QR, (8)

where 𝑍𝑇 is the transpose matrix of 𝑍. QRCP decomposes 𝑍𝑇 into a
product of an 𝑁𝑐𝑣 × 𝑁𝑟 orthogonal matrix 𝑄 and an upper triangular
matrix 𝑅, and 𝛱 is a permutation matrix calculated to ensure the value
of the diagonal elements of 𝑅 form a nonincreasing sequence to facil-
itate the determination of interpolation points. As we finish the QRCP
calculation, the value of the diagonal elements of matrix 𝑅 indicates
how significant the corresponding column of the 𝑍𝑇 matrix is, we
choose the largest ones as interpolation points. In order to reduce the
cost during QRCP procedure, we set a minimum numerical threshold.
When the

(

𝑁𝜇 +1) th diagonal element of matrix 𝑅 becomes less than
this threshold, the factorization is concluded, and the corresponding
grid points are picked as the interpolation points. The leading 𝑁𝜇
columns of the permuted 𝑍𝑇 are considered to be linearly independent.
The precision for QRCP to find the suitable interpolation points is
promising, however, the matrix 𝑍 requires 𝑂(𝑁𝑟 ×𝑁𝑐 ×𝑁𝑣) ≈ 𝑂

(

𝑁3
𝑒
)

memory and a standard QRCP procedure also cost the computation
time of 𝑂

(

𝑁3
𝑒
)

, which are not quite desirable.

5.1.2. Computing the interpolation vectors of ISDF
When the interpolation points are determined and the correspond-

ing coefficient matrix is constructed at the same time, the next step is to
compute the interpolation vectors, which form auxiliary basis functions
(ABFS). We rewrite Eq. (5) as

𝑍 = 𝛩𝐶, (9)
5

Eq. (9) is an overdetermined linear system problem with respect to
the interpolation vectors 𝛩 =

[

𝜁1, 𝜁2,… , 𝜁𝑁𝜇
]

. In general, we impose
the Galerkin condition to solve this overdetermined problem.

𝛩 = 𝑍𝐶𝑇
(

𝐶𝐶𝑇
)−1 . (10)

To this end, the solution to Eq. (10) is a least-squares approximation
problem of Eq. (9).

In general, ISDF projects the orbital pairs matrix into a much
smaller space, which uses 𝑁𝜇 interpolation points to locally express
the whole grid points 𝑁𝑟. In our tests, the traditional QRCP procedure
for interpolation points chosen, provided by Linear Algebra PACKage
(LAPACK) [34], occupies about 90% of the overall ISDF time. So our
focus is placed on finding a cheaper method to accurately find the
interpolation points.

5.2. Combining ISDF with K-means clustering

To further reduce the expensive QRCP procedure in interpolation
points selection, we propose a parallel k-Means clustering based in-
terpolation point sampling algorithm in LR-TDDFT. K-Means clustering
is one of the most simple yet effective unsupervised machine learning
algorithms, which can reveal the underlying correlation of data (elec-
tronic correlation effect in this work) by partitioning the real-space
grid points into K non-overlapping clusters according to their range of
similarity.

In this work, we use the weighted K-means algorithm to determine
𝑁μ non-overlapping clusters from 𝑁r real-space grid points to further
choose corresponding interpolation points.

argmin
𝐂𝑘 ,𝐜𝑘

𝑁𝜇
∑

𝑘=1

∑

𝐫𝑖∈𝐂𝑘

𝑤
(

𝐫𝑖
)

|𝐫𝑖 − 𝐜𝑘|2, (11)

here, 𝐂𝑘 is the cluster given by

𝐂𝑘 =
{

𝐫𝑖
|

|

|

|

|𝐫𝑖 − 𝐜𝑘|2 ≤ |𝐫𝑖 − 𝐜𝑚|2 for all 𝑖
}

. (12)

The distance between two points in the K-means algorithm is defined
as squared Euclidean distances (indicated by |𝐱 − 𝐲|2). Thus, to deter-
mine which cluster a grid point belongs to, we need to calculate the
mean Euclidean distances dist

(

𝐫𝑖, 𝐜𝑘
)

between this grid point 𝐫𝑖 and all
centroids 𝐜𝑘. The centroid of a cluster 𝐜𝑘 is defined as the weighted
average of it

𝐜𝑘 =

∑

𝐫𝑗∈𝐶𝑘 𝐫𝑗𝑤
(

𝐫𝑗
)

∑

𝐫𝑗∈𝐶𝑘 𝑤
(

𝐫𝑗
) , (13)

and 𝑤
(

𝐫𝑖
)

is the weight function for each real-space grid point. In LR-
TDDFT calculations with plane-wave basis set, we define the weight
function as Eq. (14) of each row of 𝑍, so it can faithfully represent the
norm of orbital pairs

𝑤(𝐫) =
𝑁c
∑

𝑖=1

𝑁𝑣
∑

𝑗=1
|𝜙𝑖(𝐫)|2|𝜙𝑗 (𝐫)|2. (14)

However, using the original K-Means algorithm with random initial-
ization without concerning any underneath feature of the grid points
may yield a terrible convergence problem. Since the grid points of
orbital pairs contain specific features, the initialization of centroids
should be based on the weight function. At the same time, the weight
function vector w(r) is in fact of low rank with plane-wave basis set,
which means that we only need to care about the grid points whose
weights are non-zero or greater than a threshold during the K-Means
procedure. For this reason, we first calculate the weight function at all
grid points and remove the points with weights less than the threshold,
then initialize 𝑁 centroids and apply K-Means algorithm only for the
𝜇
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Fig. 5. (a) An example of excitation wavefunctions. (b) Projection of excitation
wavefunctions and 15 interpolation points chosen by k-Means clustering (indicated by
red dots).

Table 3
Time (in seconds) spent in selecting interpolation
procedure of LR-TDDFT calculations.
𝑁𝜇 Selecting interpolation points in ISDF

QRCP K-Means

512 10.12 1.61
1,024 42.16 2.85
2,048 147.27 5.57

remaining grid points. Specifically, we choose 𝑁𝜇 grid points as the
initial centroids whose weight functions are rather large.

Since the K-Means algorithm can be directly parallelized, its parallel
performance is quite satisfying. The classification step is the most time-
consuming step and can be locally computed for each group of grid
points. After this step, the weighted sum and total weight of all clusters
can be reduced from centroids and broadcast to all processors for the
next iteration.

To validate the capability of our K-Means approach, according to
Table 3, we perform a test of our QRCP and K-Means approach on
𝑆𝑖64 systems with one processor of Intel Xeon E5-2695 CPU. The
results shown in Fig. 5 indicatethat we can get the same interpola-
tion points with a much cheaper time cost. It should be noticed that
the improved K-Means approach in LR-TDDFT calculation scales as
(𝑁𝜇𝑁 ′

𝑟
2) and𝑁 ′

𝑟 is much smaller than𝑁𝑟. And the total computational
cost for constructing Hamiltonian is (𝑁r𝑁2

𝜇 + 𝑁𝜇𝑁2
v𝑁

2
c + 𝑁𝜇𝑁 ′

𝑟
2),

which is about 2 orders of magnitude smaller compared to our naïve
approach. Also, the memory cost in LR-TDDFT calculations is reduced
from (𝑁𝑟𝑁𝑣𝑁𝑐 +𝑁2

𝑣𝑁
2
𝑐 ) to (𝑁𝜇𝑁𝑣𝑁𝑐 +𝑁2

𝑣𝑁
2
𝑐 ), although real space

points 𝑁𝑟 is generally larger than 𝑁𝑣𝑁𝑐 , the memory cost (𝑁2
𝑣𝑁

2
𝑐 )

still consumes an expensive memory footprint, which will be further
optimized in Section 5.3.

5.3. Iterative eigensolver for implicitly constructing hamiltonian

Constructing and diagonalizing the Hamiltonian occupy almost half
of the total wall clock time. According to Amdahl’s law [35], to reach
a desired overall speedup performance, we also need to accelerate the
Hamiltonian diagonalizing step.

To diagonalize 𝐻 means solving 𝐻𝑋 = 𝛬𝑋 equation, where 𝑋
represents the coefficient of excitation wavefunctions (eigenvectors)
and 𝛬 presents the excitation energies (eigenvalues). In general, the
matrix 𝐻 is large and we always only need a few eigenvalues and
eigenvectors. It means that instead of solving the entire diagonalization
problem and then extracting certain eigenvalues, we only need to find
a specific eigen-subspace of 𝐻 with the smallest eigenvalue. To meet
this requirement, we use a parallel locally optimal block preconditioned
conjugate gradient (LOBPCG) method, which is a conjugate gradient
method, to solve the equation in the subspace.

In the LOBPCG method, we use the updating formula:

𝑋(𝑖+1) = 𝑋(𝑖) ∗ 𝐶 (𝑖+1) +𝑊 (𝑖)𝐶 (𝑖+1) + 𝑃 (𝑖)𝐶 (𝑖+1), (15)
6

1 2 3
where W is the preconditioned gradient constructed from:

𝑊 (𝑖) = 𝐾−1
𝑖 (𝐻𝑋(𝑖) −𝑋(𝑖)𝛩(𝑖)). (16)

𝐾−1 is a precondition to accelerate LOBPCG method:

𝐾𝑖 = 𝜖𝑖𝑐 − 𝜖𝑖𝜇 − 𝛩
(𝑖)
𝐼 . (17)

P is an aggregate direction from the previous step:

𝑃 (𝑖) = 𝑊 (𝑖−1)𝐶 (𝑖)
2 + 𝑃 (𝑖−1)𝐶 (𝑖)

3 , (18)

and when 𝑖 = 1, we choose 𝑃 (𝑖) = 0. If we mark 𝑆𝑖 = [𝑋(𝑖),𝑊 (𝑖), 𝑃 (𝑖)],
then the key step in the LOBPCG method is to project 𝐻 onto the
subspace 𝑆𝑖 (𝐻 ∈ C𝑚×𝑚, 𝑆𝑖 ∈ C𝑚×3𝑘, 𝐻𝑠 = 𝑆†

𝑖 𝐻𝑆𝑖 ∈ C3𝑘×3𝑘 and
𝐶 (𝑖) = [𝐶 (𝑖)

1 , 𝐶
(𝑖)
2 , 𝐶

(𝑖)
3 ]𝑇 ) and solve the projected eigenvalue problem

𝐻𝑠𝐶 (𝑖+1) = 𝑆†
𝑖 𝛬𝑖𝑆𝑖𝐶

(𝑖+1). When the subspace 𝑆 and coefficients 𝐶 reach
a convergence, the corresponding excitation wavefunctions 𝑋 = 𝑆𝐶
can be directly computed.

For each iteration in the LOBPCG method, the total computation
cost is 3𝑘𝑁2

𝑐𝑁
2
𝑣 + (3𝑘)2𝑁𝑐𝑣 + (3𝑘)3 ∼ 𝑘𝑂(𝑁4

𝑒 ).
Although LOBPCG is a standard procedure in iterative diagonal-

ization, the explicit Hamiltonian cost a 𝑂(𝑁4
𝑒 ) memory footprint. We

notice that𝐻𝑠 = 𝑆†
𝑖 𝐻𝑆𝑖 can be expanded as𝐻𝑠 = 𝑆†

𝑖 𝐷𝑆𝑖+2𝑆
†
𝑖 {𝑃

†
𝑣𝑐 [(𝜈H+

𝑓xc)(𝑃𝑣𝑐𝑆𝑖)]}, which means combining with ISDF decomposition, the
𝐻 can always keep a factored form. After changing the order of
calculations, the total computational cost of implicitly constructing and
diagonalizing the Hamiltonian 𝐻𝑠 is 3𝑘𝑁𝜇𝑁𝑐𝑁𝑣 +3𝑘𝑁𝜇𝑁𝜇 + (3𝑘)2𝑁𝜇 +
(3𝑘)3 ∼ 𝑘𝑂(𝑁3

𝑒 ). The pseudocode of the implicit LOBPCG method is
demonstrated in Algorithm 2.

Algorithm 2 Implicit LOBPCG method for solving the LR-TDDFT
eigenvalue problem 𝐻𝑥𝑖 = 𝜆𝑖𝑥𝑖, 𝑖 = 1, 2,… , 𝑘.
Input: Hamiltonian 𝐻 and initial wavefunctions {𝑥𝑖}𝑘𝑖=1.

Initialize the trial subspace 𝑆1 = [𝑋(1),𝑊 (1)] and orthonormalize 𝑆1.

while convergence not reached do
Project 𝐻 onto the subspace 𝑆𝑖: 𝐻𝑠 = 𝑆†

𝑖 𝐷𝑆𝑖 + 2𝑆†
𝑖 {𝑃

†
𝑣𝑐 [(𝜈H +

𝑓xc)(𝑃𝑣𝑐𝑆𝑖)]};
Solve the projected eigenvalue problem 𝐻𝑠𝐶 (𝑖) = 𝐶 (𝑖)𝛩𝑖 and obtain
the coefficients 𝐶 = [𝐶 (𝑖)

1 , 𝐶
(𝑖)
2 , 𝐶

(𝑖)
3 ]𝑇 and eigenvalues 𝛩𝑖;

Compute 𝑋(𝑖) ← 𝑆𝑖𝐶 (𝑖), preconditioned gradient vectors 𝑊 (𝑖) =
𝐾−1(𝐻𝑋𝑖 − 𝑋𝑖𝛩𝑖) and aggregate direction 𝑃 (𝑖) = 𝑊 (𝑖−1)𝐶 (𝑖)

2 +
𝑃 (𝑖−1)𝐶 (𝑖)

3 ;
Construct the subspace 𝑆𝑖+1 ← [𝑋(𝑖),𝑊 (𝑖), 𝑃 (𝑖)];

end while
Update {𝑥𝑖}𝑘𝑖=1 ← 𝑋(𝑖).
Output:

Eigenvalues {𝜆𝑖}𝑘𝑖=1 and wavefunctions {𝑥𝑖}𝑘𝑖=1.

The complexity after each step is summarized in Table 4. As we
can see, Implicit-Kmeans-ISDF-LOBPCG version ((5) in Table 4) signifi-
cantly reduces the computation and memory cost by nearly 2 orders of
magnitude.

6. Optimizations on new sunway heterogeneous architecture as-
pect

Although ISDF-LOBPCG method can provide significant perfor-
mance improvement, it may lead to a slight degradation in accuracy,
which we will discuss in detail in Section 7. In certain scenarios, en-
suring accuracy is of the utmost importance even if it means sacrificing
simulation performance. In this section, we showcase an alternative
method that harnesses the immense computing power of the new
Sunway supercomputer to accelerate LR-TDDFT without accuracy loss.
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Table 4
Computational and memory complexity for five different versions for constructing and diagonalizing Hamiltonian in the excited-state electronic
structure calculations, including the naïve case and four-level optimized cases. Notice that 𝑁𝑟 ≈ 1000 ×𝑁𝑒, 𝑁𝜇 ≈ 10 ×𝑁𝑒, 𝑁𝑣 ≈ 𝑁𝑐 ≈ 𝑁𝑒 and
1 ≤ 𝑘 ≪ 𝑁𝑒 in the plane-wave basis sets.

LR-TDDFT versions Constructing Hamiltonian Diagonalizing Hamiltonian

Computation Memory Computation Memory

(1) Naïve (𝑁2
𝑣𝑁

2
𝑐𝑁𝑟 +𝑁𝑣𝑁𝑐𝑁𝑟) (𝑁2

𝑣𝑁
2
𝑐 +𝑁𝑟𝑁𝑣𝑁𝑐 ) (𝑁2

𝑟𝑁
2
𝑣𝑁

2
𝑐 ) (𝑁2

𝑣𝑁
2
𝑐 )

(2) QRCP-ISDF (𝑁𝑟𝑁2
𝜇 +𝑁𝜇𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁2

𝑟 ) (𝑁2
𝑣𝑁

2
𝑐 +𝑁𝜇𝑁𝑣𝑁𝑐 ) (𝑁2

𝑟𝑁
2
𝑣𝑁

2
𝑐 ) (𝑁2

𝑣𝑁
2
𝑐 )

(3) Kmeans-ISDF (𝑁𝑟𝑁2
𝜇 +𝑁𝜇𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁 ′

𝑟
2) (𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁𝑣𝑁𝑐 ) (𝑁2

𝑟𝑁
2
𝑣𝑁

2
𝑐 ) (𝑁2

𝑣𝑁
2
𝑐 )

(4) Kmeans-ISDF-LOBPCG (𝑁𝑟𝑁2
𝜇 +𝑁𝜇𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁 ′

𝑟
2) (𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁𝑣𝑁𝑐 ) 𝑘(𝑁2

𝑣𝑁
2
𝑐 ) (𝑁2

𝑣𝑁
2
𝑐 )

(5) Implicit-Kmeans-ISDF-LOBPCG (𝑁𝑟𝑁2
𝜇 +𝑁𝜇𝑁𝑣𝑁𝑐 +𝑁𝜇𝑁 ′

𝑟
2) (𝑁2

𝑣𝑁
2
𝑐 +𝑁𝜇𝑁𝑣𝑁𝑐 ) 𝑘(𝑁𝜇𝑁𝑣𝑁𝑐 ) (𝑁2

𝜇 )
Fig. 6. SW26010Pro many-core processor on the new Sunway supercomputer.

6.1. Architecture of the new sunway supercomputer

The new generation of Sunway supercomputer incorporates the lat-
est SW26010Pro many-core processor as shown in Fig. 6. The processor
consists of six core groups (CGs), each containing a management pro-
cessing element (MPE) and 64 computing processing elements (CPEs)
equipped with 16 GB DDR4 memory.

Although the new Sunway supercomputer is able to unify the indi-
vidual memory of each core group into a consolidated 96 GB memory,
it is important to note that certain essential numerical libraries such as
FFTW [30], BLAS [36], and LAPACK [34] have not yet been adapted
to accommodate this particular scheme. As a result, DFT calculations
must be conducted using a more conventional scheme, where each core
group is considered an independent processor with its own dedicated
16 GB memory.

6.2. Cache-friendly on-the-fly matrix mapping

In this subsection, we present our inventive methodologies of im-
proving the granularity of memory access to take advantage of the
bandwidth and confining it to a smaller range of addresses to make
it cache-friendly. These approaches lead to notable enhancements in
memory access while simultaneously reducing memory consumption to
a significant extent.

6.2.1. Background description
As discussed in Section 4.2, DFT calculations entail a transforma-

tion in the data and task distribution scheme, leading to numerous
and frequent memory accesses to make distributed data ready for
communication.

Moreover, given the considerable size of wavefunctions 𝛹 , it is im-
practical to accommodate the distributed data with the last level cache.
That is to say, the majority of elements are unable to effectively exploit
the cache hierarchy, resulting in poor performance, especially on the
new Sunway. These findings are substantiated by the experimental
results outlined in Table 5.

Processors such as the Intel Xeon E5-2695, comprising multiple
cores, typically allocate one process per physical core, resulting in the
sharing of available memory bandwidth among processes within the
same processor. Conversely, in DFT calculations, each core group of
SW26010Pro is assigned one process, which means it can fully exploit
the entirety of the memory bandwidth.
7

Fig. 7. The memory layout prior to task distribution scheme transformation, where
(a) displays the column partition data, and each element is numbered according to its
position in memory, (b) represents the matrix which maps corresponding element in (a)
to its target position in (c), and (c) represents data ready for communication in which
elements for the same process are continuous. The memory addresses are contiguous
along the column direction of the matrix.

Therefore, we can use large blocks of sequential accesses in memory
to reduce the performance degradation caused by higher access latency,
and confine memory access to physically closer memory address to
improve cache behavior.

6.2.2. Design and implementation
To illustrate task distribution transform, Fig. 7 presents a simpli-

fied memory layout prior to the distribution scheme changes from
the column block partition to the row block partition, in which four
processes are involved, and elements destined for the same process are
color-coded accordingly.

We present a common case that the rows of the matrix cannot be
exactly divided by the number of processes. This means that certain
blocks may contain one additional element compared to others. And
Fig. 7 visually depicts this situation.

As depicted in the figure, some elements keep their relative position
unchanged during the data transformation. This inspires us to combine
such kinds of elements into much larger blocks, which will be con-
sidered a single unit in transformation. It is crucial to emphasize that
in actual cases, these unified blocks encompass a substantial number
of elements, ranging from hundreds to thousands, depending on the
number of processes. This characteristic greatly contributes to the
efficiency of our implementation.

At the outset, we partition the original matrix into two sections
as shown in state 1 and state 2 in Fig. 8(a), where blocks within the
same section possess an equal number of elements. The upper section’s
blocks have one additional element than those in the lower section.
The boundary between these sections is illustrated as a dashed line. It is
important to note that the blocks within each section are not contiguous
in memory. This partitioning allows us to differentiate blocks with
varying numbers of elements. Meanwhile, we also introduce a small
array in Fig. 8(b), where the 𝑖th element within this array refers to the
𝑖th block of the original matrix in memory order, while the stored value
indicates the desired order in the final state.



Parallel Computing 120 (2024) 103085Q. Jiang et al.

I
a

t
m
E
a
p
s
m

o
f
b
b
l
‘
‘
i
t

t
T
e

6

o
a
T
c
m
s
o

n

Fig. 8. The procedures of packing elements into blocks and conducting the in-place data movement. In (a), the detailed contents of the original matrix are provided for states 1,
2, and 3, showcasing the ordering of each element in the column data partition using small grey numbers, along with the corresponding block indicated by larger bold numbers.
n (b), the contents of the blocks array are displayed for each state. Each rectangle with a specific number corresponds to the block with the same number in (a). The number
ssigned to each block signifies its target order among all the blocks. Blocks intended for the same process are painted with the same color.
Table 5
The execution time (in seconds) of the mentioned procedures, both before and after
packing, using 1000 atoms with different core groups.

Atoms CGs Time Time (Optimized) Speedup

1000 50 43.08 22.859 1.88
1000 100 21.332 4.02 5.31
1000 125 16.993 1.751 9.70
1000 200 11.04 1.866 5.92
1000 250 8.879 1.189 7.47
1000 500 4.587 0.439 10.45
1000 1000 2.512 0.219 11.47

Within each section, we proceed with block exchanges to rearrange
he position of each block. This exchange is facilitated by two small
apping matrices, with each matrix corresponding to one section.
ach item within the mapping matrices corresponds to a specific block
nd indicates the desired order of the corresponding block within the
rocedure. Given the deterministic transformation pattern, obtaining
uch a mapping matrix is not a challenging task. Consequently, the
atrix transitions to state 2.

Through this step, some blocks have already attained their correct
rder in relation to their adjacent blocks in the final outcome. There-
ore, in subsequent operations, these blocks can be treated as larger
locks, enhancing the granularity of data movement. For instance,
locks ‘2’ and ‘3’ will move ahead of blocks containing ‘8’ and ‘9’,
eading the matrix to state 3. Following this, we shift blocks containing
4’ and ‘5’ forward, reaching state 4. Further moving blocks with ‘6’ and
7’ forward completes the matrix’s transition to the final target state. It
s evident that the number of movements required is precisely equal to
he number of columns minus one.

It is worth highlighting that when transitioning from the row par-
ition to the column partition, a similar implementation is needed.
herefore, we will treat these transformations as a unified entity when
valuating the efficacy of our optimization.

.2.3. Results and analysis
To assess the efficiency of this optimization, we conduct simulations

f Si1000 with varying numbers of core groups, with each core group
ssigned one process. The experimental results are summarized in
able 5. The findings demonstrate that the optimization of packing
an yield substantial reductions in the costs associated with random
emory access, resulting in a remarkable speedup of up to 11.47x. The

ignificant improvement in performance underscores the effectiveness
f this optimization technique.

The results in Table 5 demonstrate a direct relationship between the
8

umber of CGs and the execution time in the original implementation.
To be specifically, the execution time of the original version is roughly
inversely proportional to the number of CGs. In other words, it is
approximately proportional to the data volume, as the fixed volume of
data is distributed across different processes. A reasonable explanation
for this is that the original implementation can barely utilize the cache
hierarchy; nearly all data accesses must reach the physical memory,
which explains why the execution time correlates with the data volume.
In contrast, with the increase of the number of processes, the optimized
implementation is more likely to access the CPU cache rather than the
physical memory, leading to a tendency for increased speedup. As an
example, due to the improved cache behavior, a substantial speedup
of 5.68x is observed in our optimized implementation when comparing
the execution time of 100 core groups (4.02 s) to that of 50 core groups
(22.859 s). These compelling outcomes clearly demonstrate the efficacy
of our optimizations in significantly improving the cache hierarchy hit
rate. Additionally, our optimization brings significant relief to memory
pressure by eliminating the need for a mapping matrix and a buffer of
equivalent size to the original data.

6.3. Acceleration by CPEs

The predominant floating performance on the new Sunway super-
computer is provided by plentiful CPEs. Therefore, it is of great interest
to accelerate the calculation by adopting CPEs.

On the new Sunway, CPEs do not have direct access to the main
memory of the core group. Instead, each CPE is equipped with its own
local device memory (LDM) of 256 KB. The LDM can be configured
in different modes to suit specific requirements. One configuration
option is to set LDM as a cache, which operates transparently to the
programmer and program. Alternatively, it can be configured as a
distributed shared space, necessitating explicit data loading from the
main memory through direct memory access (DMA). Additionally, a
hybrid mode is available where a portion of the LDM functions as a
cache while the remaining portion serves as shared space.

Several essential numerical libraries, such as ScaLAPACK, LAPACK,
and swFFT (a library for fast Fourier transformation on the new Sun-
way), have already been integrated into the new Sunway system. With
the availability of these transported and fully optimized libraries, we
can employ them to carry out various computations such as general
matrix multiplication (GEMM), and fast Fourier transformation (FFT).
These libraries empower us to efficiently perform these operations,
leveraging the computational capabilities of the CPEs and exploiting
the optimized functionality of the Sunway system.

Furthermore, recent research introduces a unified programming
framework called ShenWei Universal C/C++ (SWUC) for deploying

computational workloads onto CPEs [37]. This framework provides a
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Algorithm 3 An example of calculating 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] = 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] ∗ 𝑖𝑛𝑝𝑢𝑡[𝑖],
𝑖 = 1, 2,… , 𝑔𝑟𝑖𝑑𝑁𝑢𝑚 using CPEs, where CRTS_tid is the id of a CPE.
1: Function {SLAVE} {&STEP_SIZE, &gridNum,
2: &output, &input}
3: /* Allocated space in LDM of each CPE. */
4: DataType output_cpe[STEP_SIZE]
5: DataType input_cpe[STEP_SIZE]
6: /* Divide the entire computing task into STEP_SIZE division to fit in the
size of LDM. */

7: for i=CRTS_tid*STEP_SIZE; i<gridNum; i+=STEP_SIZE do
8: isz ← 𝑚𝑖𝑛 {gridNum-i, STEP_SIZE}
9: /* Load data of STEP_SIZE into LDM. */

10: CRTS_dma_get(output_cpe,
11: &output[i], isz*sizeof(DataType))
12: CRTS_dma_get(input_cpe,
13: &intput[i], isz*sizeof(DataType))
14: for ii ∈(0, isz) do
15: output_cpe[ii] *= input_cpe[ii]
16: end for
17: /* Write data of STEP_SIZE into main memory. */
18: CRTS_dma_put(&output[i],
19: output_cpe, isz*sizeof(DataType))
20: end for
21: EndFunction
22: call SW_RUN( SLAVE )

solution to accelerate calculations that may not benefit from existing
numerical libraries. Thanks to several new attributes and compiler
directives, writing codes running on CPEs and MPE can be achieved
by calling for lambda expressions, in which we divide data for each
CPE and specify the codes to be executed.

To identify performance bottlenecks, we analyze the runtime in-
formation of function calls or computing procedures and deploy the
workload to CPEs. Algorithm 3 demonstrates an example of deploying
a multiplication series to CPEs. In this algorithm, a function named
SLAVE, which is executed on each CPE, is defined and passed as
a parameter to SW_RUN, which is an interface to utilize the men-
tioned framework. To accommodate the limited size of LDM, we di-
vide the entire computing task into smaller divisions, each of size
STEP_SIZE. This ensures that the temporary variables output_cpe and
input_cpe fit within the available capacity of the LDM. We use the
interface CRTS_dma_get to load data from the main memory to LDM
and CRTS_dma_put to write results back to the main memory.

Given that this particular optimization significantly contributes to
the overall acceleration effect, we will not discuss the experimental
results of this aspect separately. Instead, we will analyze and evaluate
it as part of the overall optimization results in Section 7.

6.4. Scalability enhancement

The solution of eigenproblems using SYEVD in ScaLAPACK is a
computationally intensive task that demands significant time. More
unfortunately, the scalability of SYEVD on the new Sunway suffers
from terrible behavior due to suboptimal underlying implementation.
As a result, this leads to increased communication frequency and an
imbalanced workload distribution across processors. The scalability
issue becomes particularly prominent when a large number of core
groups are utilized, further amplifying the execution time required.

To alleviate this situation, we have implemented a dynamic ap-
proach that selects the optimal number of processes for performing
SYEVD. On the Sunway platform, the execution time of SYEVD initially
decreases as the number of core groups increases, reaching its peak
performance at a certain number denoted as 𝑃𝑡. However, beyond this
point, the execution time rapidly increases. Therefore, we dynamically
9

Fig. 9. Atomic configurations of (a) MATBG and (b) bulk silicon with 4096 atoms.

Table 6
The execution time in seconds of SYEVD with the simulation of silicon systems
containing 1728 atoms.

Number of CGs 108 216 432 864 1728

Naive 56.3 71.6 174.1 172.1 161.7
Optimized 56.3 56.3 56.3 56.3 56.3
Speedup 1 1.27 3.09 3.06 2.87

choose the most suitable number of core groups as the minimum value
of the allocated core groups and 𝑃𝑡. Our experimental results in Ta-
ble 6 demonstrate that this approach effectively mitigates performance
degradation.

7. Numerical results and analysis

7.1. Setup of the test physical systems and testing environment

The testing systems shown in Fig. 9 include two parts: (1) cubic
silicon systems and (2) Magic angle twisted bilayer graphene with 1180
atoms. For cubic silicon systems, we use various choices of crystal
silicon systems with 64, 216, 512, 1000, 1728, 2744, and 4096 silicon
atoms labeled by Si64, Si216, Si512, Si1000, Si1728, Si2744, and Si4096,
respectively.

We apply the Hartwigsen Goedecker Hutter (HGH) norm-conserving
pseudopotential in all of the following tests. The total number of
real-space grid points 𝑁𝑟 is determined by the kinetic energy cutoff
(𝐸cut ) defined as

(

𝑁𝑟
)

𝑖 =
√

2𝐸cut𝐿𝑖∕𝜋, where 𝐿𝑖 is the length of
each supercell along each (x, y and z) coordinate direction. Without
additional illustrations, the kinetic energy cutoff in our experiments is
20 Hartree. For example, the number of real-space grid points for a
wavefunction matrix in Si4096 is 𝑁𝑟 = 166 × 166 × 166 = 4,574,296.

In our experiments, we conducted tests of numerical algorithms on
the National Energy Research Scientific Computing Center (NERSC)’s
Cori supercomputer with parameters 𝑛𝑐 = 128, 𝑛𝑣 = 128, and
𝐸𝑥𝑡𝑟𝑎_𝑠𝑡𝑎𝑡𝑒 = 256. These parameters have a significant impact on the
execution of the diagnosis matrix. On Sunway, due to the absence of
low-rank algorithms, we reduce these parameters in order to obtain
comparable execution times, which are 𝑛𝑐 = 64, 𝑛𝑣 = 64, and
𝐸𝑥𝑡𝑟𝑎_𝑠𝑡𝑎𝑡𝑒 = 64.

For experiments on NERSC’s Cori supercomputer, we run our code
on the Haswell partition, whose each node has two sockets, each socket
is populated with a 2.3 GHz 16-core Haswell processor (Intel Xeon
Processor E5-2698 v3) and 128 GB DDR4 2133 MHz memory. Each core
supports 2 hyper-threads and has two 256-bit-wide vector units. Each
core has a theoretical peak performance of 36.8 Gflops double-precision
operations. If not mentioned particularly, we apply 8 MPI tasks per
computing node (4 OpenMP threads per MPI process) on NERSC’s Cori
supercomputer.

For experiments on the new Sunway, we apply each MPI task per
core group.
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Table 7
The three lowest excitation energies and corresponding relative errors of H2O (𝐸cut =
00.0 Ha, 𝑁𝑣 = 20 and 𝑁𝑐 = 4) system and Si64 system (𝐸cut = 50.0 Ha, 𝑁𝑣 = 128
nd 𝑁𝑐 = 50).
QE LR-TDDFT LOBPCG-ISDF 𝛥 𝐸1 𝛥 𝐸1

Single water molecule H2O

0.398312 0.397830 0.397829 0.121% 0.121%
0.550416 0.546664 0.546664 0.682% 0.682%
0.729568 0.732786 0.732785 −0.441% −0.441%

Periodic bulk silicon Si64

0.044350 0.043942 0.0439429 0.920% 0.918%
0.044350 0.043942 0.0439429 0.920% 0.918%
0.044350 0.043942 0.0439429 0.920% 0.918%

7.2. Numerical accuracy

7.2.1. Numerical algorithm acceleration
We compare our naïve version (LR-TDDFT) code and Implicit-

Kmeans-ISDF-LOBPCG version (ISDF-LOBPCG) with the current state
of the art software Quantum Espresso (QE) [38], which serves as
an accuracy benchmark. Due to the bad scalability of QE, we use
H2O and Si64 as our benchmark parts. We choose the system of one
2O molecule with the simulation boxes 11.000 × 11.000 × 11.000 Å3

nd the system of 64 silicon atoms (Si64) with the simulation boxes
0.525 × 20.525 × 20.525Å3. The calculations are performed using the
asida calculations and the relative excited energy errors are defined
y:

𝐸1 = (𝐸QE − 𝐸LR-TDDFT)∕𝐸QE

𝐸2 = (𝐸QE − 𝐸ISDF-LOBPCG)∕𝐸QE
(19)

able 7 lists the results. We find a good agreement between the
esults of QE and LR-TDDFT, with a small difference in excitation
nergies for an identical ordering of states. Our optimizations will
nly introduce little error, as small as 0.001% in relative error, which
s fairly negligible. Results mean that we already dismiss almost all
edundant computational costs beneath LR-TDDFT calculations. The
ccuracy reaches the level we need and results that the accuracy will
urther improve as kinetic energy cutoff increases.

.2.2. Heterogeneous architecture acceleration
As for our implementation on the new Sunway supercomputer, we

dopt the optimization that corresponds to heterogeneous architecture
ithout any numerical methods, which means, this implementation is
xactly as accurate as the naive version.

.3. Algorithm convergence

The algorithms proposed in this work do not affect the systematic
onvergence of LR-TDDFT, as demonstrated in many previous studies.
or example, our prior work successfully applied hybrid-LR-TDDFT
o analyze two-dimensional MoS2 consisting of 216 atoms, confirm-
ng the capability of the naive implementation to conduct physical
esearch [39]. Furthermore, numerous studies have documented the
ffectiveness of both the ISDF [40] and LOBPCG [14] methods, each
onfirming their independent convergence. Furthermore, to demon-
trate the convergence of our method unequivocally, we present the
onvergence curves for the total energy of the ground state of a silicon
ystem containing 1000 atoms below. As illustrated in Fig. 10, the total
nergy of the ground state of the system reach a convergence within 15
terations.
10
Fig. 10. The convergence curve for the total energy of silicon system with 1000 atoms.

Fig. 11. Strong scaling: the wall clock time and parallel efficiency with respect to
the number of CPU cores. Lines denote time (in seconds) and bar denotes parallel
efficiency.

7.4. Strong scaling

7.4.1. Numerical algorithm acceleration
Firstly, we will discuss strong scaling on NERSC’s Cori supercom-

puter, which is mainly based on numerical algorithms. As shown in
Fig. 11, we present the strong scaling performance of 3 versions of
our code: Naïve version, ISDF version and ISDF-LOBPCG version (cor-
responding to (1), (3) and (5) in Table 4). The testing system contains
1000 silicon atoms and the real space points 𝑁𝑟 = 104 × 104 × 104 =
,124,864. We evaluate strong scalability by parallel efficiency defined
n Eq. (20), and the speedup is compared with wall clock time in 128
PU cores.

arallel Efficiency =
Speedup

Multiple of CPU cores (20)

The parallel efficiency of our naïve design maintains above 50%
when scaling to 2048 processing cores. This result is quite acceptable
among LR-TDDFT calculations with plane-wave basis set since we need
to do a series of collective communication in the global domain.

Also, we give a more detailed analysis by splitting the wall clock
time during the procedure of constructing the Hamiltonian into 4 parts:
(1) K-Means, (2) FFT, (3) MPI, and (4) GEMM and Allreduce. As Fig. 12
shows, due to our parallel design, the K-Means, GEMM, FFT, and even
MPI procedure maintain a very convincing strong scaling performance
till 2048 CPU cores. But to implement the implicit method, we trans-
form the Hartree-exchange–correlation integrals from a single GEMM
operation to a serial of GEMMs and an MPI_Allreduce, which hinders
the total time speedup from ideal. Since MPI collective communication
routines will bring in extra overhead. To maintain good speedup and
scale the system to a larger size, the implicit Hamiltonian method is
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Fig. 12. Strong scaling performance of constructing Hamiltonian step in the LR-TDDFT
alculations.

ndispensable, so this method is a trade-off between efficiency and
trong scaling. But in our test, GEMM and Allreduce step will only
ost 12.87% of the total time of constructing Hamiltonian, the small
acrifice of strong scaling is quite worthy.

In particular, we test Si4096 system with 8192 and 12,288 process-
ng cores and bind 16 OpenMP threads with each MPI process. The
orresponding wall-clock time is 14.02 and 10.70 s, with a strong scal-
ng performance of 87.34%. Since increasing the number of OpenMP
hreads can reduce the processes within the calculation, it can straight-
orwardly reduce the communicational cost, hence improving strong
calability when we apply a large number of CPU cores. This unprece-
ented speed enables the electronic structure exploration of large-scale
ystems containing more than 4000 atoms by performing LR-TDDFT
ith a very low computation cost.

.4.2. Heterogeneous architecture acceleration
Regarding our implementation on the new Sunway, we present

etailed results in Fig. 13. Unlike previous results, the dominant pro-
edures on the Sunway platform include memory access, FFT, GEMM,
YEVD, and other calculations. From Fig. 13, we can see that memory
ccess contributes to more than one-third of the total execution time
hen using 50 core groups (CGs). However, this contribution is sig-
ificantly reduced when using 100 CGs. Furthermore, when employing
ore than 250 CGs, the impact of memory access becomes negligible

nd its execution time is even lower than that of MPI communication.
he FFT and GEMM procedures exhibit good scalability as the number
f CGs increases. Similarly, MPI communication demonstrates favorable
calability when utilizing less than 500 CGs. As for SYEVD, as discussed
arlier, we have implemented a cutoff for the number of processors to
aintain reasonable scalability, which explains why its execution time

emains unchanged when using more than 100 CGs. The original result
f SYEVD is even worse.

.5. Weak scaling

.5.1. Numerical algorithm acceleration
For implementation on the Cori supercomputer, in particular, our

ethod can significantly reduce the memory cost during calculation
teps of LR-TDDFT simulation, so we can use far fewer computing
esources to study a much larger physical system. We use LR-TDDFT-
ptimized code to test Si512, Si1000, Si1728, Si2744 and Si4096 systems

with 1024 cores and we bind single core to a process, corresponding
time is 3.58, 10.23, 26.95, 35.58 and 41.89 s. This result suits our
computational complexity well.
11
Fig. 13. Strong scaling performance on the new Sunway supercomputer.

Table 8
The wall-clock time (in seconds) and speedups of different sizes of 3D bulk silicon
systems.

Systems Naïve ISDF-LOBPCG Speedup

Si64 3.19 0.24 13.06
Si216 6.95 0.70 9.89
Si512 14.74 1.89 7.79
Si1000 32.15 5.13 6.26

7.5.2. Heterogeneous architecture acceleration
For our implementation on the new Sunway, we are unable to

perform tests on Si4096 due to memory limitations when the Ecut is set
to 20. As for Si512, Si1000, Si1728, Si2744, the time to solution is 12.46,
15.35, 32.40 and 45.74 s accordingly with 512 CGs. Considering the
much more communication costs of the new Sunway, the result also
suits the computational complexity.

7.6. Speedup

7.6.1. Numerical algorithm acceleration
For our implementation on the Cori supercomputer, we further

reduce the computation resources and bind a single core to an MPI
process, thus each process holds only 4 GB of memory. We evaluate
tests on different sizes of systems with Naïve and ISDF-LOBPCG version
((1) and (5) in Table 4) code. We observe an average speedup of
9.254x, which is quite convincing. And as sketched in Fig. 11, when
we apply larger computation resources, we also observe an average
of 12.58x speedup. In fact, among all of our numerical results, the
average speedup under our optimizations is over 10x, as you can see
from Table 8. Combining the accuracy property, our method can reach
quite faster calculations with fewer resources.

7.6.2. Heterogeneous architecture acceleration
In our implementation on the new Sunway platform, we conducted

experiments to compare the performance of our optimized version
with the naive version that was ported onto the new Sunway. The
results, presented in Fig. 14, demonstrate a trend where the speedup
ratio decreases as the number of core groups (CGs) increases. This
phenomenon can be attributed to the decrease in computing workload
that occurs as the number of CGs increases.

Our optimization achieves the highest speedup of 80.5 when the
number of CGs is set to 100. This remarkable improvement can be
attributed to the results presented in Table 5, where time for memory
access decreases dramatically when involved CGs change from 50 to
100.

Furthermore, when utilizing 500 core groups, our optimization
achieves a remarkable speedup of 23x. This emphasizes the effective-
ness of our approach in improving the computational performance on

the new Sunway platform.



Parallel Computing 120 (2024) 103085Q. Jiang et al.

o
l
t
t
p
m
t
s
m
e
s

Fig. 14. Speedup on the new Sunway, compared with the naive version.

8. Discussion

The SW26010Pro processor exhibits notable differences compared
to the Intel Xeon processor, including clock frequency, cache hierarchy,
and the architecture of the many-core design. In certain procedures that
are well-suited for the CPE architecture, such as FFT and GEMM, which
can take advantage of plentiful CPEs, a core group performs better on
the SW26010Pro processor compared to a single core on the Intel Xeon
processor. However, for workloads that are not suitable for CPEs, such
as communication and SYEVD, a core group can be weaker.

To compare the two optimization schemes, the numerical algo-
rithms demonstrate a significant acceleration of up to ten times by
introducing a controllable numerical error as a trade-off. Additionally,
the achievement of reducing memory usage by an order of magni-
tude has led to a substantial reduction in memory consumption. This
optimization scheme exhibits good strong and weak scalability, per-
forming well in terms of both increasing computational workload and
decreasing workload.

On Sunway, we apply optimizations aimed at full utilization of hard-
ware architecture. As a result, our optimization achieves an impressive
speedup of 80.5 compared to the original version with no accuracy loss.
However, it is important to acknowledge that the acceleration achieved
by acceleration units tends to diminish with the increase of computing
hardware, which means that it can hardly maintain perfect scalability.
Additionally, applications on heterogeneous platforms heavily depend
on the underlying numerical libraries.

9. Conclusion

In this work, we employ two distinct optimization schemes to
accelerate linear-response time-dependent density functional theory
(LR-TDDFT) calculations. One scheme focuses on the Intel platform,
primarily leveraging numerical algorithms with acceptable and con-
trollable accuracy loss. The other scheme targets the Sunway platform,
utilizing heterogeneous architecture to achieve impressive speedup.
We compare and analyze these two schemes and conduct substantial
experiments to evaluate them.

The optimization scheme based on the numerical algorithms
achieves a speedup of over 10x in LR-TDDFT calculations while main-
taining admirable accuracy. Furthermore, by testing the Si4096 system
n 12,288 cores, we demonstrate good strong scalability even with a
arge number of CPU cores. These advancements enable us to push
he boundaries of first-principles excited-state simulations. Meanwhile,
he acceleration based on heterogeneous architecture achieves an im-
ressive speedup of up to 80x. However, due to scalability issues and
emory limitations, it is only feasible for simulations involving up

o 2744 atoms. In its current state, this acceleration scheme is more
uitable for systems with 1k to 3k atoms. Nonetheless, these achieve-
ents provide a significant advancement in the realm of first-principles

xcited-state simulations. At the method level, we also acknowledge the
12

ignificant achievements of the novel Sternheimer method in LR-TDDFT
and other areas [41–43]. However, we found that compared to the
Casida method, it does not exhibit memory advantages and encounters
convergence challenges during actual implementation, even though it
is more stable and energy-efficient in theory.

Overall, our optimization schemes offer substantial improvements
in computational efficiency and accuracy, paving the way for ground-
breaking advancements in the field of LR-TDDFT calculations.
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