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ABSTRACT
First-principles time-dependent density functional theory (TDDFT)
is a powerful tool to accurately describe the excited-state prop-
erties of molecules and solids in condensed matter physics, com-
putational chemistry and materials science. However, a perceived
drawback in TDDFT calculations is its ultrahigh computational
cost O(𝑁 5 ∼ 𝑁 6) and large memory usage O(𝑁 4) especially for
plane-wave basis set, confining its applications to large systems
containing thousands of atoms. Here, we present a massively par-
allel implementation of linear-response TDDFT (LR-TDDFT) and
reduce the complexity to O(𝑁 3) by combining K-Means clustering
based low-rank approximation with iterative eigensolve algorithm.
Furthermore, we carefully design the parallel data and task dis-
tribution schemes to accommodate with the physical nature in
different steps of the computation, also, several optimization meth-
ods are employed to effectively handle the matrix operations and
data communications of constructing and diagonalizing the LR-
TDDFT Hamiltonian. In particular, our method can significantly
reduce the cost of computation and memory by nearly 2 orders
of magnitude compared to conventional LR-TDDFT calculations.
Numerical results demonstrate that our implementation can gain
an overall speedup of 10x and efficiently scale up to 12,288 CPU
cores for large systems up to 4,096 atoms within dozens of seconds.
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1 INTRODUCTION
First-principles calculations based on the Kohn-Sham density func-
tional theory (DFT) [17] has extensive applications in chemistry
and material science. To enable computation-based design of new
materials and predict their peculiar properties in different types
of fields with high accuracy, developing large-scale DFT and time-
dependent DFT (TDDFT) [26] methods both in ground-state and
excited-state simulations is of significant impact.

Within the framework of TDDFT, there are generally two meth-
ods for solving the time-dependent Schrödinger equation [4]. The
first approach performs the time evolution by molecular dynam-
ics on real-space grids [31], referred to as real-time TDDFT (RT-
TDDFT). Another approach is the most common formula to adopt
excited-state properties, which evaluates exactly many-body Schrö-
dinger equation of the time-dependent linear response function
formulated in the frequency domain. It exploits Fourier transform
to acquire excitation energies and corresponding wavefunctions,
referred to as linear-response TDDFT (LR-TDDFT).

https://doi.org/10.1145/3545008.3545092
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Within LR-TDDFT framework, Casida equation [6] is the most
commonly used formula to describe the excitation energy and cor-
responding wavefunctions. To solve the Casida equation, the most
time-consuming parts in the LR-TDDFT calculations can be sum-
marized as two parts, one is to explicitly construct the LR-TDDFT
Hamiltonian with the complexity of O(𝑁 5

𝑒 ) with respect to the num-
ber of electrons in the system 𝑁𝑒 , and the other is to diagonalize
the LR-TDDFT Hamiltonian with the complexity of O(𝑁 6

𝑒 ). As the
system expands, the computational and memory cost of LR-TDDFT
calculations in a general CPU platform becomes prohibitively ex-
pensive, especially on large complete basis sets, such as plane-wave
basis set. Therefore, exploring the excited-state properties of sys-
tems with thousands of atoms using the LR-TDDFT method is still
a very tough task.

The state of the art LR-TDDFT calculations in CP2KwithGaussian-
type orbitals (GTOs) allow the study of large-scale systems includ-
ing aluminosilicate imolite nanotubes, in addition to surface and
bulk vacancy defects inMgO andHfO2 with nearly 1,000 atoms [27].
However, the above software is all implemented under localized
basis sets, which are not commensurate with desired accuracy espe-
cially when the system is complex. In particular, there has been no
breakthrough for a long time with regard to standard plane-wave
basis set because of ultra-high computational and memory cost in
the LR-TDDFT calculations, which hinders excited-state electronic
structure exploration for large-scale periodic systems containing
thousands of atoms.

Fortunately, this situation can be immensely improved thanks to
appearance of new algorithmic methods and modern high perfor-
mance computing (HPC) facilitates. For example, low-rank decom-
position methods like density fitting approximation, also known as
the resolution of identity algorithms [24], can help not only accel-
erate the construction of LR-TDDFT Hamiltonian but also signifi-
cantly lower the memory cost. Furthermore, the iterative subspace
eigensolver algorithms, such as Davidson [8] and LOBPCG [11],
have been successfully applied to simulate excited-state proper-
ties by giving an estimation of the lowest 𝑘 eigenvalues with a
favorable computational cost of O(𝑘𝑁 4

𝑒 ) (𝑘 is the number of de-
sired lowest eigenvalues and corresponding eigenvectors). Given
all these advances, the large-scale excited-state calculations of LR-
TDDFT framework with plane-wave basis set become reachable.

In this work, we present the recently developed low-rank de-
composition methods like QR factorization with column pivoting
(QRCP) based interpolative separable density fitting (ISDF) [19],
which provides us an efficient and accurate way to reduce the ultra-
high computational and memory cost during the construction of
Hamiltonian in the simulation of LR-TDDFT. To further reduce the
time cost and explore parallelism, we propose a K-Means based
parallel ISDF algorithm to avoid expensive time costs during QRCP
procedure and the terrible parallelism that follows. Also, we reduce
the computational and memory cost by implicitly constructing and
iteratively diagonalizing the Hamiltonian. Moreover, we perform
extensive numerical experiments on Cori supercomputer, the Cray
XC40 system in the National Energy Research Scientific Computing
Center (NERSC). The results show that our method can gain an
overall 10x speedup with negligible error, reduce a large amount
of memory footprint, and efficiently scale to massive computation

cores, thereby enabling us to study the excited-state properties with
larger scale than current state of the art.

The main contributions of this work can be summarized as fol-
lows:
(1) A series of parallel algorithms, including K-Means based low-

rank decomposition, iterative eigenvalue solver and implicit
Hamiltonian method are implemented to reduce the computa-
tion and memory cost, expand the system size and accelerate
the computation steps in the LR-TDDFT calculations.

(2) We demonstrate that with our algorithms along with parallel
implementations and optimizations, we can study the three-
dimensional semiconducting silicon systems with 4,096 atoms,
this result exceeds current state of the art both in parallel scale
and the system scale.

(3) Under extensive experiments, we show that our method can
achieve high scalability, with regard to both strong scaling and
weak scaling. Also, our method will remain high accuracy even
in strong correlation systems especially for two-dimensional
magic-angle twisted bilayer graphene (MATBG), thereby pro-
viding an insight into the physical nature of complex systems.

(4) We have opensourced our software at https://bitbucket.org/
berkeleylab/scales/src/lrtddft/ in the hope that our approach
can provide insight for relevant high-performance applications
with the same computational characteristics.
The rest of this article is organized as follows. We review related

work in section 2. We describe the algorithm for performing LR-
TDDFT calculations with plane-wave basis set in section 3. The
mathematical methods are introduced in section 4. The parallel
implementation is presented in section 5. Then we report the nu-
merical results and following analysis in section 6, and we conclude
this work in section 7.

2 RELATEDWORKS
Although different types of basis sets can be used in the DFT and
TDDFT calculations, plane-wave (PW) basis set [22] in the broad-
est sense seems current to be the most advantageous for complex
periodic solid systems in condensed matter physics and materi-
als science, compared to small localized atomic orbitals (AO) [4]
basis set, which is more suitable for molecular systems in quan-
tum chemistry. In particular, PW basis set is complete and allows
a faithful analytical evaluation of the total energy, atomic forces,
and other physical quantities. But the computational cost of DFT
within plane-wave basis set increases rapidly with respect to the
number of electrons in the systems because the number of PW
basis set is much expensive than the case of small localized AO
basis sets (𝑁PW ≈ 100 × 𝑁AO), which hinders its practical applica-
tions to large systems containing thousands of atoms. For example,
traditional ground-state DFT calculations with plane-wave basis
set are exorbitantly expensive due to O(𝑁 3

𝑒 ) scaling computational
and memory complexity with respect to the number of electrons
𝑁𝑒 ≈ 1, 000 [30].

Although it’s quite difficult for this software with plane-wave
basis to expand to large systems, large-scale TDDFT excited-state
electronic structure calculations within small localized basis sets
(like atomic and Gaussian basis set) for molecular systems have
been implemented recently, such as NWChem [28] and QChem [25].

https://bitbucket.org/berkeleylab/scales/src/lrtddft/
https://bitbucket.org/berkeleylab/scales/src/lrtddft/
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Table 1: Performance comparison of massively parallel excited-state simulation software packages on modern heterogeneous
supercomputers, involving different HPC codes (NWChem, CP2K, PWDFT and BerkeleyGW) within different types of basis
sets (Plane-wave (PW), Gaussian and mixed Gaussian and plane wave (GPW)).

HPC Software Year Theory Basis set Method System #atoms Architecture Reference
NWChem 2016 LR-TDDFT Gaussian Explicit Water molecules 1,890 Intel Xeon [32]
CP2K 2019 LR-TDDFT GPW Explicit MgO; HfO2 1,000 Intel Xeon [27]

PWDFT 2019 RT-TDDFT PW Implicit Silicon 1,536 V100 GPU [20]
BerkeleyGW 2020 GW PW Explicit Silicon 2,742 V100 GPU [9]
PWDFT 2021 LR-TDDFT PW Implicit Silicon; Graphene 4,096 Intel Xeon This work

In detail, NWChem was used to study the excited-state properties
of the system containing 120 atoms with 1840 6-311G Gaussian
basis set (Au20Ne100), and in that work, NWChem efficiently scales
to 2,250 CPU cores on the CINECA supercomputer.

For periodic solid systems, the GW approximation derived from
the Green’s function has also become a powerful formalism for
studying single-electron excitations of molecules and the quasi-
particle band gaps of solids within many-body effects. Recently,
large-scale GW calculations containing 2,742 atoms within the
plane-wave basis set in BerkeleyGW [9] have also been imple-
mented in the Summit supercomputer.

3 THEORETICAL ALGORITHMS OF LR-TDDFT
The LR-TDDFT calculations consists of two parts: (1) constructing
Hamiltonian and (2) diagonalizing Hamiltonian.

The Hamiltonian we need to construct in LR-TDDFT calculations
has the following numerical structure:

𝐻 =

[
𝐷 + 2𝑉Hxc 2𝑊Hxc
−2𝑊Hxc −𝐷 − 2𝑉Hxc

]
, (1)

where𝐷 (𝑖𝑣𝑖𝑐 , 𝑗𝑣 𝑗𝑐 ) =
(
𝜀𝑖𝑐 − 𝜀𝑖𝑣

)
𝛿𝑖𝑣 𝑗𝑣𝛿𝑖𝑐 𝑗𝑐 , is an𝑁𝑐𝑣×𝑁𝑐𝑣 (𝑁𝑐𝑣 =

𝑁𝑐 × 𝑁𝑣 , in which 𝑁𝑐 is the number of conduction orbitals, 𝑁𝑣 is
the number of valence orbitals and 𝛿 denotes Dirac delta function)
matrix. These orbital energies (𝜀𝑖𝑣 (𝑖𝑣 = 1, . . . , 𝑁𝑣) and 𝜀𝑖𝑐 (𝑖𝑐 =

1, . . . , 𝑁𝑐 )) and corresponding orbitals are typically obtained via
ground-state Kohn-Sham DFT calculations. The 𝑉𝐻𝑥𝑐 and𝑊𝐻𝑥𝑐

matrices represent the Hartree-exchange-correlation integrals.
With the Tamm-Dancoff approximation (TDA) [12],𝑊Hxc matrix

is neglectable so the Hamiltonian matrix has the form

𝐻 = 𝐷 + 2𝑉Hxc . (2)

In discrete cases, 𝑉Hxc is defined as the multiplication of the
matrix 𝑓Hxc and transposed block face-splitting product (or Block
column-wise version of the Khatri-Rao product) matrix [21] 𝑃𝑣𝑐 =

{𝜓𝑖𝑣 (r)𝜓𝑖𝑐 (r)}.𝜓𝑖𝑣 (r) and𝜓𝑖𝑐 (r) stand for the valence and conduc-
tion orbitals in real space ({ri}𝑁𝑟

𝑖=1, 𝑁𝑟 denotes the number of real
space grid points during the calculations).

𝑉Hxc = 𝑃
†
𝑣𝑐 𝑓Hxc𝑃𝑣𝑐 , (3)

here 𝑓Hxc is the kernel of Hartree-exchange-correlation operator

𝑓Hxc
(
r, r′

)
= 𝑓H

(
r, r′

)
+ 𝑓xc [𝑛]

(
r, r′

)
=

1
|r − r′ | +

𝛿𝑉xc [𝑛] (r)
𝛿𝑛 (r′) ,

(4)

where 𝑛(r) = ∑𝑁𝑣

𝑖=1 |𝜓𝑖 (r) |
2 encodes the electronic density and 𝑓𝑥𝑐

is the exchange-correlation potential in LR-TDDFT calculations.
After constructing the Hamiltonian matrix, like other conven-

tional KS-DFT calculations, we need to diagonalize it explicitly
to get the excitation wavefunctions X and corresponding excita-
tion energies 𝜆. In our naïve implementation, diagonalization is
realized by SYEVD routine in ScaLAPACK [7] with ultra-high com-
plexity of O(𝑁 3

𝑣𝑁
3
𝑐 ) ∼ O(𝑁 6

𝑒 ). We explain our implementation in
Algorithm 1.

We remark that 𝑁𝑟 is generally much larger (1,000×) than 𝑁𝑒

and 𝑁𝑣 ≈ 𝑁𝑐 ≈ 𝑁𝑒 for large normalized plane-wave basis set. And
we summarize the computational and memory cost of constructing
and diagonalizing Hamiltonian in Table 2.

Algorithm 1 The pseudocode for the LR-TDDFT calculations.
Input: Ground-state energies 𝜖𝑖 , wavefunctions𝜓𝜇 (r) and𝜓𝜈 (r)

distributed according to the row index.
1: for each MPI process do
2: Initialize 𝑃𝑣𝑐 (𝑟 ) = {𝜓𝜇 (𝑟 )𝜓𝜈 (𝑟 )} in real space;
3: Carry MPI_Alltoall to wavefunctions Ψ to transfer data dis-

tribution scheme from row block partition to column block
partition;

4: Transfer 𝑃𝑣𝑐 (𝑔) into reciprocal space via fast Fourier trans-
form (FFT);

5: Apply the Hartree potential operator in reciprocal space and
transfer it back into real space 𝑣H (𝑔)𝑃𝑣𝑐 (𝑔);

6: Carry out MPI_Alltoall to wavefunctions Ψ to transfer data
distribution scheme from column block partition to row
block partition;

7: Compute the Hartree-exchange-correlation integrals 𝑉Hxc
in real space via general matrix multiply (GEMM);

8: Summarize 𝑉Hxc within all MPI tasks by MPI_Allreduce;
9: end for
10: Obtain Hamiltonian by computing the difference of Kohn-Sham

energy eigenvalues;
11: Diagonalize the Hamiltonian;
Output: Excited-state energies {𝜆𝑖 } and wavefunctions {𝑥𝑖 𝑗 }

4 ALGORITHM INNOVATIONS
As we can see from Table 2, the Hamiltonian matrix occupies a
large fraction of the memory footprint. For example, when 𝑁𝑐 =

𝑁𝑣 = 256 and double-precision is used during the calculation, each
process will hold a matrix of 32 GB, which brings about ultra-high
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Table 2: Computation and memory complexity for constructing and diagonalizing the LR-TDDFT Hamiltonian matrix with the
naïve LR-TDDFT code. Within the plane-wave basis set, 𝑁𝑟 ≈ 1, 000 × 𝑁𝑒 and 𝑁𝑣 ≈ 𝑁𝑐 ≈ 𝑁𝑒 in the table.

LR-TDDFT Computation Memory

Constructing Hamiltonian

Face-splitting product of conduction-valence orbitals O(𝑁𝑣𝑁𝑐𝑁𝑟 ) O (𝑁𝑣𝑁𝑐𝑁𝑟 )
Fast fourier transform (FFT) O(𝑁 2

𝑣𝑁
2
𝑐𝑁𝑟 ) O (𝑁𝑣𝑁𝑐𝑁𝑟 )

General matrix multiply (GEMM) O(𝑁 2
𝑣𝑁

2
𝑐𝑁𝑟 ) O (𝑁 2

𝑣𝑁
2
𝑐 )

𝑓𝐻𝑥𝑐 kernel O(𝑁𝑣𝑁𝑐𝑁𝑟 ) O (𝑁𝑣𝑁𝑐𝑁𝑟 )
Diagonalizing Hamiltonian ScaLAPACK::Syevd O(𝑁 3

𝑣𝑁
3
𝑐 ) O (𝑁 2

𝑣𝑁
2
𝑐 )

computation cost and communication overhead, hence limiting the
studied system size to expand.

4.1 Low-Rank Approximation in LR-TDDFT by
ISDF

As shown in Algorithm 1, all computational operations are based
on the two-electron integrals

{
𝜌𝑖 𝑗 (r) := 𝜓𝑖 (r)𝜙 𝑗 (r)

}
1≤𝑖≤𝑚,1≤ 𝑗≤𝑛

(orbital pair product). But when we look into the matrix 𝑃𝑣𝑐 (𝑟 )
constructed from valence and conduction orbitals Ψ and Φ, the
information beneath it is commonly markedly redundant. In other
words, we can use several much smaller matrices to represent it. So
exploiting the numerical rank deficiency of the pair products is the
cornerstone to reducing the time cost of this operation and all the
related computing-intensive operations. Several low-rank tensor
approximations have been proposed, including the Resolution-of-
the-identity (RI) [3] approximation and the interpolative separable
density fitting (ISDF) [23] decomposition. The key spirit of these
low-rank approximations is to carefully choose a set of interpolation
points 𝑁𝜇 (𝑁𝜇 = 𝑐𝑁𝑟 , where c is a small preconstant) from all the
real space grid points 𝑁𝑟 in advance, which can give an accurate
representation of all orbital-pair products. So we can represent
𝜓𝑖 (r)𝜙 𝑗 (r) with the multiplication of two matrices. One matrix
can be viewed as the expansion coefficients matrix 𝐶𝑖 𝑗𝜇 1≤𝜇≤𝑁𝜇

(a
third-order tensor), whose each single row is extracted from the
two-electron integrals matrix according to interpolation points 𝑟𝜇
for 𝜇 = 1, . . . , 𝑁𝜇 . The other matrix can be viewed as numerical
auxiliary basis functions (ABFs)

{
𝜁𝜇 (r)

}
1≤𝜇≤𝑁𝜇

, for which we will
refer to as the interpolating vectors in the rest of the article, so that

𝜓𝑖 (r)𝜙 𝑗 (r) ≈
𝑁𝜇∑︁
𝜇=1

𝜁𝜇 (r)𝐶𝑖 𝑗𝜇 . (5)

Furthermore, the central idea of the ISDF decomposition differ-
ent from other low-rank tensor approximations is to decompose
the third-order tensor 𝐶𝑖 𝑗𝜇 1≤𝜇≤𝑁𝜇

again, into a transposed block

face-splitting product of two matrices 𝐶𝑖 𝑗𝜇 = 𝜓𝑖
(
r̂𝜇
)
𝜙 𝑗

(
r̂𝜇
)
. The

decomposition scheme of ISDF is shown in Figure 1.
Thus the Hamiltonian matrix can be rewritten as:

𝐻 = 𝐷 + 2𝐶† (𝑉̃𝐻𝑥𝑐𝐶), (6)

under ISDF with the auxiliary basis set, the Hartree exchange-
correlation integrals 𝑉𝐻𝑥𝑐 can be projected in this form:

𝑉̃𝐻𝑥𝑐 = 𝜁
†
𝜇 (𝑓Hxc𝜁𝜇 ) . (7)

The parentheses in Equation 6 and 7 represent the order of
multiplication.

The time cost of constructing the Hamiltonian (not including
ISDF procedure, for which we will later discuss) is now significantly
reduced to O(𝑁r𝑁 2

𝜇 + 𝑁𝜇𝑁
2
v𝑁

2
c ). Under the ISDF basis set, the first

term accounts for the time cost of computing 𝑉̃Hxc and the second
term is the cost of three matrix multiplications and FFTs.

Figure 1: The ISDF decomposition and its parallel strategy
for LR-TDDFT. Each process holds a segment of orbital pairs
and auxiliary basis functions, and every process holds the
same copy of coefficients.

In section 4.1.1 and 4.1.2, we will discuss the main procedures in
the ISDF approximation as a background of our improved method.

4.1.1 Selecting the Interpolation Points of ISDF. Consider a dis-
cretizedmatrix𝑍 of size𝑁𝑟×(𝑁𝑐𝑣) and find𝑁𝜇 rows of𝑍 so that the
remaining rows of𝑍 can be approximated by the linear combination
of the selected 𝑁𝜇 rows. This procedure is so-called interpolative
decomposition, and one traditional way is using the randomized
sampling QR factorization with column pivoting (QRCP) [10] from
real space grid points to attain a low-rank approximation of 𝑍

𝑍𝑇Π = QR, (8)
where𝑍𝑇 is the transpose matrix of𝑍 . QRCP decomposes𝑍𝑇 into a
product of an𝑁𝑐𝑣×𝑁𝑟 orthogonal matrix𝑄 and an upper triangular
matrix 𝑅, and Π is a permutation matrix calculated to ensure the
value of the diagonal elements of 𝑅 form a nonincreasing sequence
to facilitate the determination of interpolation points. As we finish
the QRCP calculation, the value of the diagonal elements of matrix
𝑅 indicates how significant the corresponding column of the 𝑍𝑇
matrix is, we choose the largest ones as interpolation points. In
order to reduce the cost during QRCP procedure, we set a mini-
mum numerical threshold. When the

(
𝑁𝜇 +1) th diagonal element

of matrix 𝑅 becomes less than this threshold, the factorization is
concluded, and the corresponding grid points are picked as the
interpolation points. The leading 𝑁𝜇 columns of the permuted 𝑍𝑇
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are considered to be linearly independent. The precision for QRCP
to find the suitable interpolation points is promising, however, the
matrix 𝑍 requires 𝑂 (𝑁𝑟 × 𝑁𝑐 × 𝑁𝑣) ≈ 𝑂

(
𝑁 3
𝑒

)
memory and a stan-

dard QRCP procedure also cost the computation time of 𝑂
(
𝑁 3
𝑒

)
,

which are not quite desirable.

4.1.2 Computing the Interpolation Vectors of ISDF. When the in-
terpolation points is determined and the corresponding coefficient
matrix is constructed at the same time, the next step is to com-
pute the interpolation vectors, which form auxiliary basis functions
(ABFS). We rewrite Equation 5 as

𝑍 = Θ𝐶, (9)

Equation 9 is an overdetermined linear system problem with
respect to the interpolation vectorsΘ =

[
𝜁1, 𝜁2, . . . , 𝜁𝑁𝜇

]
. In general,

we impose the Galerkin condition to solve this overdetermined
problem.

Θ = 𝑍𝐶𝑇
(
𝐶𝐶𝑇

)−1
. (10)

To this end, the solution to Equation 10 is a least-squares approx-
imation problem of Equation 9.

In general, ISDF projects the orbital pairs matrix into a much
smaller space, which uses 𝑁𝜇 interpolation points to locally ex-
press the whole grid points 𝑁𝑟 . In our tests, the traditional QRCP
procedure for interpolation points chosen, provided by Linear Al-
gebra PACKage (LAPACK) [2], occupies about 90% of the overall
ISDF time. So our focus is placed on finding a cheaper method to
accurately find the interpolation points.

4.2 Combining ISDF with K-Means Clustering
To further reduce the expensive QRCP procedure in interpolation
points selection, we propose a parallel k-Means clustering based
interpolation point sampling algorithm in LR-TDDFT. K-Means clus-
tering is one of the most simple yet effective unsupervised machine
learning algorithms, which can reveal the underlying correlation of
data (electronic correlation effect in this work) by partitioning the
real-space grid points into K non-overlapping clusters according to
their range of similarity.

In this work, we use the weighted K-means algorithm to deter-
mine 𝑁𝜇 non-overlapping clusters from 𝑁r real-space grid points
to further choose corresponding interpolation points.

arg min
C𝑘 ,c𝑘

𝑁𝜇∑︁
𝑘=1

∑︁
r𝑖 ∈C𝑘

𝑤 (r𝑖 ) |r𝑖 − c𝑘 |2, (11)

here, C𝑘 is the cluster given by

C𝑘 =

{
r𝑖

���� |r𝑖 − c𝑘 |2 ≤ |r𝑖 − c𝑚 |2 for all 𝑖
}
. (12)

The distance between two points in K-means algorithm is defined
as squared Euclidean distances (indicated by |x − y|2). Thus, to
determinewhich cluster a grid point belongs to, we need to calculate
the mean Euclidean distances dist (r𝑖 , c𝑘 ) between this grid point
r𝑖 and all centroids c𝑘 . The centroid of a cluster c𝑘 is defined as the
weighted average of it

c𝑘 =

∑
r𝑗 ∈𝐶𝑘

r𝑗𝑤
(
r𝑗
)∑

r𝑗 ∈𝐶𝑘
𝑤

(
r𝑗
) , (13)

and𝑤 (r𝑖 ) is the weight function for each real-space grid point.
In LR-TDDFT calculations with plane-wave basis set, we define
weight function as Equation 14 of each row of 𝑍 , so it can faithfully
represent the norm of orbital pairs

𝑤 (r) =
𝑁r∑︁

𝑖, 𝑗=1
|𝜙𝑖 (r) |2 |𝜙 𝑗 (r) |2 . (14)

However, using the original K-Means algorithm with random
initialization without concerning any underneath feature of the
grid points may yield a terrible convergence problem. Since the
grid points of orbital pairs contain specific features, the initializa-
tion of centroids should be based on the weight function. At the
same time, the weight function vector w(r) is in fact of low rank
with plane-wave basis set, which means that we only need to care
about the grid points whose weights are non-zero or greater than
a threshold during the K-Means procedure. For this reason, we
first calculate the weight function at all grid points, and remove
the points with weights less than the threshold, then initialize 𝑁𝜇

centroids and apply K-Means algorithm only for the remaining grid
points. Specifically, we choose 𝑁𝜇 grid points as the initial centroids
whose weight functions are rather large.

Since the K-Means algorithm can be directly parallelized, its
parallel performance is quite satisfying. The classification step is
the most time-consuming step and can be locally computed for each
group of grid points. After this step, the weighted sum and total
weight of all clusters can be reduced from centroids and broadcasted
to all processors for the next iteration.

To validate the capability of our K-Means approach, according to
Table 3, we perform a test of our QRCP and K-Means approach on
𝑆𝑖64 systems with one processor of Intel Xeon E5-2695 CPU. The
results show that we can get the same interpolation points with
a much cheaper time cost. It should be noticed that the improved
K-Means approach in LR-TDDFT calculation scales as O(𝑁𝜇𝑁

′
𝑟

2)
and 𝑁 ′𝑟 is much smaller than 𝑁𝑟 . And the total computational cost
for constructing Hamiltonian is O(𝑁r𝑁 2

𝜇 + 𝑁𝜇𝑁
2
v𝑁

2
c + 𝑁𝜇𝑁

′
𝑟

2),
which is about 2 orders of magnitude smaller compared to our
naïve approach. Also, the memory cost in LR-TDDFT calculations is
reduced fromO(𝑁𝑟𝑁𝑣𝑁𝑐+𝑁 2

𝑣𝑁
2
𝑐 ) toO(𝑁𝜇𝑁𝑣𝑁𝑐+𝑁 2

𝑣𝑁
2
𝑐 ), although

real space points 𝑁𝑟 is generally larger than 𝑁𝑣𝑁𝑐 , the memory cost
O(𝑁 2

𝑣𝑁
2
𝑐 ) still consumes an expensive memory footprint, which

will be further optimized in Section 4.3.

Table 3: Time (in seconds) spent in selecting interpolation
procedure of LR-TDDFT calculations.

𝑁𝜇
Selecting interpolation points in ISDF
QRCP K-Means

512 10.12 1.61
1,024 42.16 2.85
2,048 147.27 5.57
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Figure 2: (a) An example of excitation wavefunctions. (b)
Projection of excitation wavefunctions and 15 interpolation
points chosen by k-Means clustering (indicated by red dots).

4.3 Iterative Eigensolver for Implicitly
Constructing Hamiltonian

Constructing and diagonalizing the Hamiltonian occupy almost
half of the total wall clock time. According to Amdahl’s law [1],
to reach a desired overall speedup performance, we also need to
accelerate the Hamiltonian diagonalizing step.

To diagonalize 𝐻 means solving 𝐻𝑋 = Λ𝑋 equation, where 𝑋
represents the coefficient of excitationwavefunctions (eigenvectors)
and Λ presents the excitation energies (eigenvalues). In general, the
matrix 𝐻 is large and we always only need a few eigenvalues and
eigenvectors. It means that instead of solving the entire diagonal-
ization problem then extracting certain eigenvalues, we only need
to find a specific eigen-subspace of 𝐻 with the smallest eigenvalue.
To meet this requirement, we use a parallel locally optimal block
preconditioned conjugate gradient (LOBPCG) method, which is a
conjugate gradient method, to solve the equation in subspace.

In LOBPCG method, we use that updating formula:

𝑋 (𝑖+1) = 𝑋 (𝑖) ∗𝐶 (𝑖+1)1 +𝑊 (𝑖)𝐶 (𝑖+1)2 + 𝑃 (𝑖)𝐶 (𝑖+1)3 , (15)

where W is the preconditioned gradient constructed from:

𝑊 (𝑖) = 𝐾−1
𝑖 (𝐻𝑋

(𝑖) − 𝑋 (𝑖)Θ(𝑖) ) . (16)

𝐾−1 is a precondition to accelerate LOBPCG method:

𝐾𝑖 = 𝜖𝑖𝑐 − 𝜖𝑖𝜇 − Θ
(𝑖)
𝐼
. (17)

P is an aggregate direction from the previous step:

𝑃 (𝑖) =𝑊 (𝑖−1)𝐶 (𝑖)2 + 𝑃
(𝑖−1)𝐶 (𝑖)3 , (18)

andwhen 𝑖 = 1, we choose 𝑃 (𝑖) = 0. If wemark 𝑆𝑖 = [𝑋 (𝑖) ,𝑊 (𝑖) , 𝑃 (𝑖) ],
then the key step in the LOBPCG method is to project 𝐻 onto the
subspace 𝑆𝑖 (𝐻 ∈ C𝑚×𝑚 , 𝑆𝑖 ∈ C𝑚×3𝑘 , 𝐻𝑠 = 𝑆

†
𝑖
𝐻𝑆𝑖 ∈ C3𝑘×3𝑘 and

𝐶 (𝑖) = [𝐶 (𝑖)1 ,𝐶
(𝑖)
2 ,𝐶

(𝑖)
3 ]

𝑇 ) and solve the projected eigenvalue prob-
lem𝐻𝑠𝐶

(𝑖+1) = 𝑆†
𝑖
Λ𝑖𝑆𝑖𝐶

(𝑖+1) . When the subspace 𝑆 and coefficients
𝐶 reach a convergence, the corresponding excitation wavefunctions
𝑋 = 𝑆𝐶 can be directly computed.

For each iteration in the LOBPCG method, the total computation
cost is 3𝑘𝑁 2

𝑐 𝑁
2
𝑣 + (3𝑘)2𝑁𝑐𝑣 + (3𝑘)3 ∼ 𝑘𝑂 (𝑁 4

𝑒 ).
Although LOBPCG is a standard procedure in iteratively di-

agonalization, but the explicit Hamiltonian cost a 𝑂 (𝑁 4
𝑒 ) mem-

ory footprint. We notice that 𝐻𝑠 = 𝑆
†
𝑖
𝐻𝑆𝑖 can be expanded as

𝐻𝑠 = 𝑆
†
𝑖
𝐷𝑆𝑖 +2𝑆†

𝑖
{𝑃†𝑣𝑐 [(𝜈H+ 𝑓xc) (𝑃𝑣𝑐𝑆𝑖 )]}, which means combining

with ISDF decomposition, the 𝐻 can always keep a factored form.
After changing the order of calculations, the total computational
cost of implicitly constructing and diagonalizing the Hamiltonian
𝐻𝑠 is 3𝑘𝑁𝜇𝑁𝑐𝑁𝑣 + 3𝑘𝑁𝜇𝑁𝜇 + (3𝑘)2𝑁𝜇 + (3𝑘)3 ∼ 𝑘𝑂 (𝑁 3

𝑒 ). The
pseudocode of the implicit LOBPCG method is demonstrated in
Algorithm 2.

Algorithm 2 Implicit LOBPCG method for solving the LR-TDDFT
eigenvalue problem 𝐻𝑥𝑖 = 𝜆𝑖𝑥𝑖 , 𝑖 = 1, 2, . . . , 𝑘 .
Input: Hamiltonian 𝐻 and initial wavefunctions {𝑥𝑖 }𝑘𝑖=1.
Initialize the trial subspace 𝑆1 = [𝑋 (1) ,𝑊 (1) ] and orthonormal-
ize 𝑆1.
while convergence not reached do
Project 𝐻 onto the subspace 𝑆𝑖 : 𝐻𝑠 = 𝑆

†
𝑖
𝐷𝑆𝑖 + 2𝑆†

𝑖
{𝑃†𝑣𝑐 [(𝜈H +

𝑓xc) (𝑃𝑣𝑐𝑆𝑖 )]};
Solve the projected eigenvalue problem 𝐻𝑠𝐶

(𝑖) = 𝐶 (𝑖)Θ𝑖 and
obtain the coefficients 𝐶 = [𝐶 (𝑖)1 ,𝐶

(𝑖)
2 ,𝐶

(𝑖)
3 ]

𝑇 and eigenvalues
Θ𝑖 ;
Compute 𝑋 (𝑖) ← 𝑆𝑖𝐶

(𝑖) , preconditioned gradient vectors
𝑊 (𝑖) = 𝐾−1 (𝐻𝑋𝑖 − 𝑋𝑖Θ𝑖 ) and aggregate direction 𝑃 (𝑖) =

𝑊 (𝑖−1)𝐶 (𝑖)2 + 𝑃
(𝑖−1)𝐶 (𝑖)3 ;

Construct the subspace 𝑆𝑖+1 ← [𝑋 (𝑖) ,𝑊 (𝑖) , 𝑃 (𝑖) ];
end while
Update {𝑥𝑖 }𝑘𝑖=1 ← 𝑋 (𝑖) .

Output:
Eigenvalues {𝜆𝑖 }𝑘𝑖=1 and wavefunctions {𝑥𝑖 }𝑘𝑖=1.

The complexity after each step is summarized in Table 4. As we
can see, Implicit-Kmeans-ISDF-LOBPCG version ((5) in Table 4)
significantly reduces the computation and memory cost by nearly
2 orders of magnitude.

5 PARALLEL IMPLEMENTATION
5.1 Basic Design
To fully take advantage of computing resources provided by the
modern HPC systems, we carefully design a two-level MPI-OpenMP
hybrid parallelization strategy along with different forms of data
distribution fashions in LR-TDDFT implementation depending on
their physical nature.

Our method is written within PWDFT (Plane Wave Density
Functional Theory) [19], which forms one separate component of
the massively parallel quantum chemistry calculations software
package DGDFT (Discontinuous Galerkin Density Functional The-
ory) [18]. For simplicity in implementation and computational scal-
ability, we apply the local-density approximation (LDA) [15] func-
tional in the KS-DFT and LR-TDDFT calculations.

5.2 Parallel Data distribution formula
As we can see from Figure 3, we design three data distribution
schemes for the naïve LR-TDDFT implementation. The first one is
column block partition, which means each column of wavefunc-
tions Ψ is distributed to each MPI process according to its column
index. This data distribution scheme is approvingly efficient to ap-
ply Hartree operator since each MPI task is able to perform fast
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Table 4: Computational and memory complexity for five different versions for constructing and diagonalizing Hamiltonian
in the excited-state electronic structure calculations, including the naïve case and four-level optimized cases. Notice that
𝑁𝑟 ≈ 1, 000 × 𝑁𝑒 , 𝑁𝜇 ≈ 10 × 𝑁𝑒 , 𝑁𝑣 ≈ 𝑁𝑐 ≈ 𝑁𝑒 and 1 ≤ 𝑘 ≪ 𝑁𝑒 in the plane-wave basis sets.

LR-TDDFT versions Constructing Hamiltonian Diagonalizing Hamiltonian
Computation Memory Computation Memory

(1) Naïve O(𝑁 2
𝑣𝑁

2
𝑐 𝑁𝑟 + 𝑁𝑣𝑁𝑐𝑁𝑟 ) O(𝑁 2

𝑣𝑁
2
𝑐 + 𝑁𝑟𝑁𝑣𝑁𝑐 ) O(𝑁 2

𝑟 𝑁
2
𝑣𝑁

2
𝑐 ) O(𝑁 2

𝑣𝑁
2
𝑐 )

(2) QRCP-ISDF O(𝑁𝑟𝑁
2
𝜇 + 𝑁𝜇𝑁

2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁

2
𝑟 ) O(𝑁 2

𝑣𝑁
2
𝑐 + 𝑁𝜇𝑁𝑣𝑁𝑐 ) O(𝑁 2

𝑟 𝑁
2
𝑣𝑁

2
𝑐 ) O(𝑁 2

𝑣𝑁
2
𝑐 )

(3) Kmeans-ISDF O(𝑁𝑟𝑁
2
𝜇 + 𝑁𝜇𝑁

2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁

′
𝑟

2) O(𝑁 2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁𝑣𝑁𝑐 ) O(𝑁 2

𝑟 𝑁
2
𝑣𝑁

2
𝑐 ) O(𝑁 2

𝑣𝑁
2
𝑐 )

(4) Kmeans-ISDF-LOBPCG O(𝑁𝑟𝑁
2
𝜇 + 𝑁𝜇𝑁

2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁

′
𝑟

2) O(𝑁 2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁𝑣𝑁𝑐 ) 𝑘O(𝑁 2

𝑣𝑁
2
𝑐 ) O(𝑁 2

𝑣𝑁
2
𝑐 )

(5) Implicit-Kmeans-ISDF-LOBPCG O(𝑁𝑟𝑁
2
𝜇 + 𝑁𝜇𝑁𝑣𝑁𝑐 + 𝑁𝜇𝑁

′
𝑟

2) O(𝑁 2
𝑣𝑁

2
𝑐 + 𝑁𝜇𝑁𝑣𝑁𝑐 ) 𝑘O(𝑁𝜇𝑁𝑣𝑁𝑐 ) O(𝑁 2

𝜇 )

Fourier transform (FFT) independently in reciprocal space. The
second one is row block partition, which means each row of wave-
functions Ψ is distributed to each MPI process based on its column
index. This distribution strategy benefits the calculation of the face-
splitting product and matrix-matrix multiplication (GEMM). We
remark that we use MKL [29] and FFTW [13] to carry out GEMM
and FFT operations respectively in our implementation.

Figure 3: Parallel data and task distribution schemes of LR-
TDDFT. (a) column block partition for FFT, (b) row block
partition for GEMM and face face-splitting product (c) 2-
D parallelization for diagonalization (SYEVD). The parallel
scheme is given with 8 wavefunctions and 4 computing pro-
cessors as examples.

We obtain the ground-state wavefunctions from PWDFT, which
is stored with column block partition theme. Then we transform
the wavefunctions to row block partition theme to apply the face-
splitting product. For the Hamiltonian matrix, we first apply the
Hartree operator, which is diagonal in reciprocal space, and then
apply the exchange-correlation operator, which is diagonal in real
space. To facilitate the calculation steps according to their peculiar-
ities, we use fast Fourier transform (FFT) to convert the 𝑃𝑣𝑐 from
real space to the 𝑃𝑣𝑐 in reciprocal space ({Gi}

𝑁𝑔

𝑖=1, 𝑁𝑔 indicates grid
points in reciprocal space). To apply Fourier transform, the conver-
sion from row block partition to column block partition is carried by
MPI_Alltoall routine as demonstrated in Figure 3 (a) and (b). When
we finish constructing the Hamiltonian, we need to diagonalize it
to obtain excitation energies and corresponding wavefunctions. For
the diagonalization step, the two-dimensional block cyclic partition
theme as sketched in Figure 3(c) is the most advantageous data
distribution type to perform directly diagonalization via the SYEVD

routine in the ScaLAPACK library. We perform the data redistri-
bution routine pdgemr2d provided by the ScaLAPACK library to
convert the data distribution theme from row block partition to
two-dimensional block cyclic partition

5.3 Overlap of Computation and
Communication

As shown in line 8 and 9 of Algorithm 1, after we perform General
Matrix Multiply (GEMM) to get the Hartree-exchange-correlation
integrals in each single process, MPI_Allreduce is used to gather
𝑉Hxc in allMPI tasks. There is data dependence becauseMPI_Allreduce
must wait for GEMM to finish computation, in particular when the
size of a matrix is large, thus disrupt the overlapping of computa-
tion and communication. When the studied system’s size increases,
although GEMM can be calculated via MKL in a very efficient way,
both GEMM and MPI_Allreduce will introduce much time cost. To
fully accelerate the process of LR-TDDFT, we make attempts to
overlap the step of computation and communication.

MPI_Allreduce MPI_Reduce

Figure 4: Data reduction optimization, take the first row of
Matrix 𝑉Hxc as an example.

First, by analyzing the data partition of LR-TDDFT, we find that
in order to calculate the difference between the energy eigenvalues
of Kohn-Sham function, not all MPI tasks need to store the entire
𝑉Hxc matrix. Therefore, we optimize the data partitioning method
shown in Figure 4. Then we get the result of GEMM, each MPI task
only needs to store a part of the 𝑉Hxc matrix.

The above attempt brings two benefits. First of all, this new data
partitioning method can reduce the memory usage of MPI process.
Second, we don’t need to execute MPI_AllReduce to collect the
entire 𝑉Hxc matrix, but use MPI_Reduce to transmit a part of the
𝑉Hxc matrix to each MPI task according to the index.
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Figure 5: Pipeline approach of GEMM and MPI_Reduce.

As a result of this attempt, we have eliminated part of the data
dependence. In more detail, we can divide the matrix into small
pieces and manually perform GEMM on these small parts. The
basic flow of GEMM and reduction is shown in Figure 5. Once the
result of each block is obtained, we can immediately reduce the
block matrix to each MPI task through MPI_Reduce. Then, we will
allocate the entire 𝑉Hxc distributed in each MPI task.

6 NUMERICAL RESULTS AND ANALYSIS
6.1 Setup of the Test Physical Systems and

Testing Environment
The testing systems include two parts: (1) cubic silicon systems
and (2) Magic angle twisted bilayer graphene with 1180 atoms.
For cubic silicon systems, we use various choices of crystal silicon
systems with 64, 216, 512, 1,000, 1,728, 2,744, and 4,096 silicon
atoms labeled by Si64, Si216, Si512, Si1000, Si1728, Si2744, and Si4096,
respectively. We apply the Hartwigsen Goedecker Hutter (HGH)
norm-conserving pseudopotential [16] in all of the following tests.
The total number of real-space grid points 𝑁𝑟 is determined by the
kinetic energy cutoff (𝐸cut ) defined as (𝑁𝑟 )𝑖 =

√
2𝐸cut𝐿𝑖/𝜋 , where

𝐿𝑖 is the length of each supercell along each (x, y and z) coordinate
direction. Without additional illustrations, the kinetic energy cutoff
in our experiments is 20 Hartree. For example, the number of real-
space grid points for a wavefunction matrix in Si4096 is 𝑁𝑟 = 166 ×
166 × 166 = 4,574,296.

Figure 6: Atomic configurations of (a) MATBG and (b) bulk
silicon with 4,096 atoms.

All numerical tests are performed on the National Energy Re-
search Scientific Computing Center (NERSC)’s Cori supercomputer.

We run our code on the Haswell partition, whose each node has two
sockets, each socket is populated with a 2.3 GHz 16-core Haswell
processor (Intel Xeon Processor E5-2698 v3) and 128 GB DDR4 2133
MHz memory. Each core supports 2 hyper-threads and has two
256-bit-wide vector units. Each core has a theoretical peak perfor-
mance of 36.8 Gflops double-precision operations. In our numerical
experiments, if not mentioned particularly, we apply 8 MPI tasks
per computing node (4 OpenMP threads per MPI process).

6.2 Numerical Accuracy
We first analyze the numerical accuracy of our code. We compare
our naïve version (LR-TDDFT) code and Implicit-Kmeans-ISDF-
LOBPCG version (ISDF-LOBPCG) with the current state of the art
software Quantum Espresso (QE) [14], which serves as an accuracy
benchmark. Due to the bad scalability of QE, we use H2O and
Si64 as our benchmark parts. We choose the system of one H2O
molecule with the simulation boxes 11.000 × 11.000 × 11.000 Å3

and the system of 64 silicon atoms (Si64) with the simulation boxes
20.525 × 20.525 × 20.525 Å3. The calculations are performed using
the Casida calculations and the relative excited energy errors are
defined by:

Δ𝐸1 = (𝐸QE − 𝐸LR-TDDFT)/𝐸QE
Δ𝐸2 = (𝐸QE − 𝐸ISDF-LOBPCG)/𝐸QE

(19)

Table 5 lists the results. We find a good agreement between the
results of QE and LR-TDDFT, with a small difference in excitation
energies for an identical ordering of states. Our optimizations will
only introduce little error, as small as 0.001% in relative error, which
is fairly negligible. Results mean that we already dismiss almost
all redundant computational costs beneath LR-TDDFT calculations.
The accuracy reaches the level we need and results that the accuracy
will further improve as kinetic energy cutoff increases.

Table 5: The three lowest excitation energies and correspond-
ing relative errors of H2O system and Si64 system.

QE LR-TDDFT ISDF-LOBPCG Δ 𝐸1 Δ 𝐸2

Single water molecule H2O (𝐸cut = 100.0 Ha, 𝑁𝑣 = 20 and 𝑁𝑐 = 4)
0.398312 0.397830 0.397829 0.121% 0.121%
0.550416 0.546664 0.546664 0.682% 0.682%
0.729568 0.732786 0.732785 -0.441% -0.441%
Periodic bulk silicon Si64 (𝐸cut = 50.0 Ha, 𝑁𝑣 = 128 and 𝑁𝑐 = 50)
0.044350 0.043942 0.0439429 0.920% 0.918%
0.044350 0.043942 0.0439429 0.920% 0.918%
0.044350 0.043942 0.0439429 0.920% 0.918%

6.3 Strong Scaling
The most significant measure for the LR-TDDFT software with all
the aforementioned optimization is the strong scalability, which
reflects howmuch the growth of hardware resources takes effect for
a determined system as adding the numbers of computing resources.
As shown in Figure 7, we present the strong scaling performance
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of 3 versions of our code: Naïve version, ISDF version and ISDF-
LOBPCG version (corresponding to (1), (3) and (5) in Table 4). The
testing system contains 1000 silicon atoms and the real space points
𝑁𝑟 = 104 × 104 × 104 = 1,124,864. We evaluate strong scalability
by parallel efficiency defined in Equation 20, and the speedup is
compared with wall clock time in 128 CPU cores.

Parallel Efficiency =
Speedup

Multiple of CPU cores (20)

The parallel efficiency of our naïve design maintains above 50%
when scaling to 2,048 processing cores. This result is quite accept-
able among LR-TDDFT calculations with plane-wave basis set since
we need to do a series of collective communication in the global
domain.
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Figure 7: Strong scaling: the wall clock time and parallel
efficiency with respect to the number of CPU cores. Lines
denote time (in seconds) and bar denotes parallel efficiency.

Also, we give a more detailed analysis by splitting the wall clock
time during the procedure of constructing the Hamiltonian into 4
parts: (1) K-Means, (2) FFT, (3) MPI, and (4) GEMM and Allreduce.
As Figure 8 shows, due to our parallel design, the K-Means, GEMM,
FFT, and even MPI procedure maintain a very convincing strong
scaling performance till 2048 CPU cores. But to implement the
implicit method, we transform the Hartree-exchange-correlation
integrals from a single GEMM operation to a serial of GEMMs and
an MPI_Allreduce, which hinders the total time speedup from ideal.
Since MPI collective communication routines will bring in extra
overhead. To maintain good speedup and scale the system to a
larger size, the implicit Hamiltonian method is indispensable, so
this method is a trade-off between efficiency and strong scaling.
But in our test, GEMM and Allreduce step will only cost 12.87% of
the total time of constructing Hamiltonian, the small sacrifice of
strong scaling is quite worthy.

In particular, we test Si4096 system with 8,192 and 12,288 process-
ing cores and bind 16 OpenMP threads with each MPI process. The
corresponding wall-clock time is 14.02 and 10.70 seconds, with a
strong scaling performance of 87.34%. Since increasing the number
of OpenMP threads can reduce the processes within the calculation,
it can straightforwardly reduce the communicational cost, hence
improving strong scalability when we apply a large number of CPU

cores. This unprecedented speed enables the electronic structure ex-
ploration of large-scale systems containing more than 4,000 atoms
by performing LR-TDDFT with a very low computation cost.
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Figure 8: Strong scaling performance of constructing Hamil-
tonian step in the LR-TDDFT calculations.

6.4 Weak Scaling
One yet critical metric for the LR-TDDFT software is the weak
scalability, which reflects the parallel performance for a scaled
problem size accompanying a fixed number of CPU cores. In partic-
ular, our method can significantly reduce the memory cost during
calculation steps of LR-TDDFT simulation, so we can use far fewer
computing resources to study a much larger physical system. We
use LR-TDDFT-optimized code to test Si512, Si1000, Si1728, Si2744
and Si4096 systems with 1024 cores and we bind single core to a
process, corresponding time is 3.58, 10.23, 26.95, 35.58 and 41.89
seconds. This result suits our computational complexity well.

6.5 Speedup
We also perform tests to validate the speedup ability of our method.
We further reduce the computation resources, and bind a single core
to an MPI process, thus each process holds only 4 GB of memory.
We evaluate tests on different sizes of systems with Naïve and
ISDF-LOBPCG version ((1) and (5) in Table 4) code. We observe
an average speedup of 9.254x, which is quite convincing. And as
sketched in Figure 7, when we apply larger computation resources,
we also observe an average of 12.58x speedup. In fact, among all of
our numerical results, the average speedup under our optimizations
is over 10x, combining the accuracy property, our method can reach
quite faster calculations with fewer resources.

Table 6: The wall-clock time (in seconds) and speedups of
different sizes of 3D bulk silicon sytems.

Systems Naïve ISDF-LOBPCG Speedup
Si64 3.19 0.24 13.06
Si216 6.95 0.70 9.89
Si512 14.74 1.89 7.79
Si1000 32.15 5.13 6.26
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6.6 Application: Ground and Excited States
calculations of MATBG

Magic-angle twisted bilayer graphene (MATBG) [5] with Moir𝑒
superlattices can trap long-lived interlayer excitons, which provides
a good platform to investigate the exciton dynamics effect and
many-body effect in condensed matter physics. However, there has
been little research on the calculation of moir𝑒 excitons in MATBG
since such metallic and long-range electron-correlation periodic
solid systems are too large to investigate by LR-TDDFT calculations.

Figure 9: Ground-state and excited-state electronic structures
of MATBG. (a) Density of states of ground-state MATBG with
different interlayer distances D = 2.6 and 4.0 Å (Inset displays
the isosurface of ground-state wavefunctions for D = 2.6 Å),
and (b) density of states of excitation energies of MATBG
with D= 2.6 Å (Inset displays the isosurfaces of the lowest
excited-state electron (blue) and hole (green)).

Weuse large-scale DFT and LR-TDDFT calculations implemented
in PWDFT to investigate the ground-state and excited-state elec-
tronic structures of MATBG that contains 1,180 carbon atoms as
shown in Figure 9. We calculate the density of states (DOS) of
MATBG as shown in Figure 9 (a). In particular, we observe the
moir𝑒 superlattices trap a number of localized electrons at the
Fermi level in MATBG when the interlayer distance is 2.6 Å, due
to strong quantum electron-correlation effect, which agrees well
with the previous tight-binding models and experimental measure-
ments [5]. However, when the interlayer distance is increased to
be 4.0 Å, such localized states disappear as the electron-correlation
effect in MATBG. Also we compute the density of states of exci-
tation energies of MATBG (D = 2.6 Å) as shown in Figure 9 (b). A
number of excited-states (photoexcited electrons and holes) are pro-
duced at the low-lying energy range (0 - 0.5 eV), which may result
from the photoexcitation between the strongly localized states of
ground-state MATBG.

To conclude, our computational results provide some useful
insight into the intrinsic physical mechanism of quantum ground-
state and excited-state electronic structures of MATBG, which
can help to understand the quantum electron-correlation effect
in MATBG and corresponding physical phenomena, such as pho-
toexcitation, superconductivity and topological insulator, in future
experiments.

7 CONCLUSION
In this work, we propose several optimizations to accelerate linear-
response time-dependent density functional theory (LR-TDDFT)

calculations without little accuracy loss. First we combine K-Means
clustering with interpolative separable density fitting (ISDF) de-
composition to choose the interpolation points at a much cheaper
cost, compared to traditional QRCP based ISDF procedure. Then we
adopt Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) method to get the lowest k eigenvalue iteratively. At
last, we put forward an implicitly LR-TDDFT Hamiltonian con-
structing and diagonalizing method to further reduce the memory
consumption and computation time. We also carefully design the
task distribution schemes to ensure the flexibility and efficient use
of the computation process. In our experiments, these methods
can gain an acceleration of above 10 times while preserving ad-
mirable accuracy. By testing Si4096 systemwith 12,288 cores, we also
prove that under our parallel design, good strong scalability can be
reachable even using a large number of CPU cores. Given all these
benefits, we can push the envelope of first-principles excited-state
simulations further.
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