2020 IEEE 22nd International Conference on High Performance Computing and Communications | 978-1-7281-7649-9/20/$31.00 ©2020 IEEE | DOI: 10.1109/HPCC-SmartCity-DSS50907.2020.00025

2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)

An Efficient Multi-GPU Implementation for
Linear-Response Time-Dependent Density Functional
Theory

Qingcai Jiang', Lingyun Wan?, Shizhe Jiao!, Wei Hu?, Junshi Chenf* and Hong Anf*
fSchool of Computer Science and Technology, University of Science and Technology of China, Hefei, China
{Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics,
and Synergetic Innovation Center of Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei, China
Email: Tjqgc@mail.ustc.edu.cn, i{Waunly7 j82z226}@mail.ustc.edu.cn, fwhuustc@uste.edu.cn,
fejuns@mail.uste.edu.cn, Than@uste.edu.cn

Abstract—Nowadays, Kohn-Sham density functional theory
(DFT) calculation has drawn more and more attention in
chemistry and material science simulations. However, due to
the extreme large Hamiltonian matrix needed to be generated
during the calculation, when the studied system increases, the
cost of calculation becomes unbearable both in ground and
excited state electronic structure simulations with large uniform
basis. In this paper, we propose a high-performance multi-GPU
approach for linear-response time-dependent density functional
theory (LR-TDDFT) calculation to compute the excitation
energies in molecules and solids with the plane wave basis set
under the periodic boundary condition. We carefully design the
parallel implementation, calculation steps and data distribution
schemes in the naive CPU implementation to maintain good
scalability when the studied system expands, then port the most
time-consuming part to multi-GPU platform along with several
effective optimization steps. The results show that with dual
V100 GPUs, the proposed approach can achieve an average
of 6.68x speedup compared with dual 12-core Xeon CPU with
bulk silicon systems that comprises thousands of atoms (1,024
atoms).

Index Terms—Linear-response time-dependent density func-
tional theory, GPU, Parallel approach

I. Introduction

Due to its good balance between accuracy and compu-
tational efficiency, the time-dependent density functional
theory (TDDFT), established by the Runge-Gross theo-
rem [1], which is a self-consistent framework proposed to
describe the excited states properties in many systems
like molecules and solids, has been widely used in matter
physics, quantum chemistry and material science [2]-[4].
Generally speaking, there are two ways to solve the time-
dependent Schordinger equation within the framework of
TDDFT [5], [6], the most widely used approach is linear-
response time-dependent density functional theory (LR-
TDDFT), which is often referred directly as TDDFT in
literature, solves many-body quantum problems through
Fourier transformation of the time-dependent linear re-
sponse functions. It obtains excitation energies and cor-

*Corresping Author: Hong An and Junshi Chen.

responding oscillation strengths from poles and residues in
the complex response function [7], [8].

Within LR-TDDFT framework, the most common way
to obtain the excitation energy and corresponding wave
functions is to solve the linear response Cassida equation.
The most time-consuming part in LR-TDDFT calculation
is to explicitly construct the LR-TDDFT Hamiltonian with
the complexity of O(N?) with respect to the number of
electrons in the studied system, N.. So as the system
expands, the computation and memory cost of LR-TDDFT
calculation in generic CPU platform becomes prohibitively
expensive, especially in large uniform basis sets such as
plane wave basis set. Therefore, it is still a very challenging
work to explore the excited state properties of system with
hundreds of atoms with the LR-TDDFT framework.

Fortunately, the situation has been improved thanks to
both new algorithm developments and the development
of heterogeneous computing architecture like General-
Purpose Graphics Processing Unit (GP-GPU). On the
algorithmic aspect, we can carry Tamm-Dancoff approx-
imation and use local-density approximation functional to
reduce computational cost while maintaining the chemical
accuracy at the computational level, as a contrast, tradi-
tional LR-TDDF'T calculation will carry the computational
step with a much larger LR-TDDFT Hamiltonian, which
increases the cost of computation, memory and communi-
cation. On the hardware aspect, heterogeneous architecture
powered by GPU accelerators has become the most widely
used architecture among supercomputers, as an example,
The Top-2 fastest supercomputer Summit’s 95% computing
power is provided by the latest NVIDIA Tesla V100 GPU,
which has significantly increased the available computing
power. Compared with the generic CPU processor, GPU
provides much higher floating-point computing efficiency,
which can be greatly beneficial for LR-TDDFT calculation.

In this paper, motivated by algorithm and hardware
evolvements, we propose a highly efficient multi-GPU im-
plementation of LR-TDDFT, which was designed carefully
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in mathmatical way and offloads the matrix multiplica-
tion, Fast Fourier Transform and several computationally
intensive kernels computations from CPUs to commodity
GPUs.

We summarize the contribution as follows:

o We design an efficient parallel strategy along with use-
ful data distribution schemes to implement large scale
linear-response time-dependent density functional the-
ory.

We carry out a method for multi-GPU acceleration in
LR-TDDFT and propose some resultful optimizations
to further reduce the wall clock time.

We perform extensive experiments to evaluate the
performance of the proposed LR-TDDFT calculation
on GPUs to prove the effectiveness of our method.

The rest of the manuscript is organized as follows.
Section II presents the theoretical algorithm and parallel
implementation of LR-TDDFT. Multi-GPU implementa-
tion and some other optimizations are shown in section
ITII. The numerical result and corresponding analysis are
discussed in Section I'V. In Section V, we review the related
works. We conclude our work and propose an outlook for
our future work in Section VI.

II. Parallel Implementation of LR-TDDFT

In this section, we will introduce the theoretical approach
and parallel implementation of LR-TDDFT with the plane
wave set on CPU platform in detail. We remark that
the scalable implementation of LR-TDDFT is facilitated
by the MPI-OpenMP hybrid parallel strategy to reduce
the massively high computational cost in constructing and
calculating the eigenvalues of LR-TDDFT Hamiltonian.

A. Theoretical Algorithm
LR-TDDFT solves eigenvalue equation of the form

HX =AX (1)

Where X represents the coefficient of excitation wave-
function in the Kohn-Sham orbitals and A presents the
excitation energies. The H is what we call LR-TDDFT
Hamiltonian because it has similar form with Hamiltonian

in KS-DFT [8].

D+ 2VHXC
72Wch

2VVHXC

i = -D — 2Vch

(2)

D (iyic, juje) = (€i, — €i,) 0i,j.0i.5., here 0 denotes the
Kronecker delta, is an Ny X Ney (Ney = N X N, matrix, N,
is the number of conduction orbitals and N, is the number
of valence orbitals) diagonal matrix. These energies and
orbitals are typically obtained via the Kohn-Sham density
functional theory (KSDFT) [9] calculations. The Viix. and
Whxe are the Hatree-exchange-correlation integrals [10]
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Vixe = /\I/fu(r)\lfic(r)foc(nr’)\I/jv(r’)\I/;fn(r’)drdr’

Wiixe = /\I/;-*V(r)\llic(r)foc(nr’)\I/;v(r’)\I/jC(r’)drdr/

3)

Here fux. is the Hatree-exchange-correlation kernel

foxe (v, 0') = fu (v, 1) + fue[n] (r, 1)
1 OVae[n](x)

B [r —1/| on (r')

Where n(r) Zfi”l |W,(r)]* is the electron density and
fze is the exchange-correlation potential in LR-TDDFT
calculation.

Thanks to the Tamm-Dancoff approximation (TDA) [11],
Whxe is neglectable and H becomes Hamiltonian matrix
with the form

()

So basically we need to get Hartree-exchange-correlation
integral Viy. to construct the LR-TDDFT Hamiltonian,
and in discrete cases Vg.. can be constructed as the
multiplication of the matrix fry. and transposed Khatri-
Rao product matrix [12] P,. = {¥;, (r)¥, (r)} with the
valence and conduction orbitals (¥;, (r) and ¥, (r)) in real
space, here N, denotes the number of grid points for a
wavefunction in real space.

(4)

H =D + 2Vigx

Vch = PchchPvc (6)

For simplicity and computational scalability, we choose
to use the local-density approximation (LDA) functional
[13] in the KSDFT and LR-TDDFT calculation. With
LDA funtioanal, f,. that denotes exchange-correlation
potential, and it is diagonal in real space ({ri}fgl), SO
the exchange-correlation product f..P,. is more efficiently
computed in real space via General Matrix Multiply with a
computational complexity of O(N,N2N2) ~ O(N?), here
N, denotes the number of electrons in the studied system.
We notice that the Hartree potential vy is diagonal in
reciprocal space ({Gi}f\ﬁl), here N, is the grid points
in reciprocal space. We transform Vy to reciprocal space
SO f)HPUC can be computed in a more efficient pattern.
duPye can be calculated by General Matrix Multiply with
a computational complexity of O(N,N2ZNZ2) ~ O(N?) after
we use the Fast Fourier Transform (FFT) to carry the
transform from real space to reciprocal space. After these
steps, we perform FFT to the product of Hartree potential
operation between reciprocal and real space to add vy Py,
and fy.P,. and multiply PJC to get the result of Hartree-
exchange-correlation integral Viyc.

According to Equation 2, LR-TDDFT Hamiltonian can
be constructed by adding Vi, and D. Right after con-
structing the LR-TDDFT Hamiltonian H, the rest of the
LR-TDDFT calculation is diagonalizing the LR-TDDFT
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Hamiltonian H to get the excitation wavefunctions X  partition, each column of wavefunction are stored to one
and energies A. The process of LR-TDDFT calculations MPI task based on its column index. This data distribution
is presented in Algorithm 1. scheme is highly efficient to apply Hatree operator since
different MPI tasks are able to perform FFTs independently
in reciprocal space. The second one is row block partition,
in this scheme the data is distributed according to the
the wavefunctions ¥ and ground-state energies &; cacul- partition of MPI tasks. This distribution scheme facilitates
lated by PWDFT (Planewave density functional theory)  the evaluation of matrix-matrix multiplication (GEMM). In
[14], which is a submodule of DGDFT (Discontinuous [ R_TDDFT the wavefunctions ¥ are mostly distributed in
Galerkin Density Functional Theory) [15], [16]. DGDFT is {16 column block partition to present superposition of a set
a massively parallel software package to perform large-scale ot gigenwave functions in the system. The conversion from

Kohn-Sham density functional theory (DFT) calculations .ojymn block partition to row block partition is perform
efficiently and PWDFT is a self-contained module for per- iy MPI Alltoall.

forming conventional standard plane-wave based electronic
structure calculations. To maintain the high computational III. Multi-GPU Acceleration
efficiency at a large scale, we design a MPI-OpenMP hybrid
parallelization strategy in LR-TDDFT implementation. In
specific, we use MPI to handle different types of data and
task distribution schemes and we use OpenMP to further
discover the parallelism of each MPI task so it can be fully
scalable on modern supercomputers.

As we can see from figure 1, there are two main data
distribution schemes for the wavefunctions in the LR-
TDDFT implementation. The first one is column block

B. Parallel Implementation
We implement the LR-TDDFT module to post-process

To compute the excitation energies in molecules and
solids with plane wave basis set, it usually takes 80% of wall
clock time to apply the Hatree potential in reciprocal space
and compute the Hatree-exchange-correlation integrals in
real space with our Naive CPU implementation. To be
exact, the most time consuming part consists of operations
such as Fast Fourier Transform (FFT), General Matrix
Multiply (GEMM), matrix diagonalization (SYEVD) and
some MPI communications such as MPI Allreduce. These
matrix operations can be done via the level 3 Basic Linear
Algorithm 1 The pseudocode for carrying the LR-TDDFT  Algebra Subprograms (BLAS), Linear Algebra PACKage

calculations. (LAPACK) and Fastest Fourier Transform in the West
Input: (FFTW) libraries in the CPU implementation. To fully
Ground-state energies €; accelerate the time-intensive part of LR-TDDFT, we port
Wavefunctions W, (r) and W, (r) distributed according  these kernels to GPUs with either GPU-accelerated or

to the column block index. CUDA custom kernels. We also carry a better data par-

1: for each MPI task in LR-TDDFT calculation do tition way to overlap the MPI communications and GPU
2. Initialize Pyc(r) = {@,(r)¥,(r)} in real space ~ computation in order to fully explore the parallel potential

O(NyNcN;) of the heterogeneous architecture.

3:  Carry out MPI__Alltoall to wavefunctions ¥ to trans-
fer data distribution scheme from row block partition

to column block partition Y Wy
4:  transfer P,.(r) into reciprocal space (fftR2C) ~ (a) (b)
O(N,logN,.N,N,) o
5. Apply the Hartree potential in reciprocal space and ’
transfer into real space vy Pye ~ O(N,logN, N, N. +
N.N,N,) I3
6: Carry out MPI_Alltoall to wavefunctions ¥ to MPI_Alltoall
transfer data distribution scheme from column block o [ Haf A2 [ £z >
partition to row block partition P,
7. Compute the Hartree-exchange-correlation integrals
Viixe in real space (GEMM) ~ O(N, N2N?)
8  summarize Viy within all MPI tasks by Py
MPI Allreduce
9: end for Column block partition for FFT Row block partition for GEMM

10: Obtain LR-TDDFT Hamiltonian by computing the

difference of Kohn-Sham energy cigenvalues
8y ©18 Fig. 1. Parallel data and task distribution schemes of LR-TDDFT. (a)

11: Diagonalize the LR-TDDFT Hamiltonian H Band parallelization with column block partition (for FET) and (b)
Output:  Excited-state energies {\;} and wavefunctions grid parallelization with row block partition (for GEMM). Illustration
{xij} of the parallel scheme with wavefunction number N., = 8 and 4

computation cores.
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In order to carry out efficient acceleration on multi-GPU
platform, we perform a serial of optimization steps.

A. Point-to-point Replacement

The first step of porting LR-TDDFT to GPU is to replace
the most computationally expensive part kernels like FFT
and GEMM by using cuBLAS, cuFFT and CUDA custom
kernels to accelerate the computation of Algorithm 1. In
our implementation, the CUDA custom kernels are written
to fill the gaps between the cuFFT functions as a damping
coefficient to accelerate the process of convergence. In
our CPU implementation, the data distribution scheme is
perfect for multi-GPU parallelization because each MPI
task holds all the data needed to perform numerical
operations, so there is no GPU-GPU data transfer between
calculation steps. After mapping these kernels to GPU, the
CPUs only perform a spot of computation steps, and most
of the CPU time are used to carry MPI communication,
and the data copy between CPU and GPU is necessary
before and after each GPU calculation operation.

B. Overlap of computation and communication.

In principle, CUDA-aware MPI communication can nat-
urally overlap with the GPU computation. But as we can
see from Algorithm 1, right after computing the Hartree-
exchange-correlation integrals via General Matrix Multiply
(GEMM), we perform MPI__Allreduce to gather Viiy in all
MPI tasks. Due to data dependence, MPI__Allreduce must
wait for GEMM to finish computation, thus the overlapping
of computation and communication is disrupted. When the
system size increases, although GPUs can handle GEMM in
a very efficient way, both GEMM and MPI__Allreduce will
introduce much time cost. To fully accelerate LR-TDDFT,
we made an attempt to achieve the overlap of computation
and communication.

First of all, after analyzing the data partition of LR-
TDDFT, we find that to calculate the difference between
Kohn-Sham energy eigenvalues, not all MPI tasks need to
store the whole Vi . matrix. So after GEMM, we change
the way of data partition, as we can see from Figure 2, then
we get the result of GEMM, each MPI task only needs to
store part of the Vi, matrix.

np=12

Fig. 2. Data partition optimization of Vijxc

MPI_Allreduce

MPI_Reduce

Fig. 3. Data reduction optimization, take the first row of Matrix Virxe
as example

The above attempts bring about two merits. First, this
data partition way can reduce memory usage for the
number of MPI processes times. Second, we will not need to
perform MPI__Allreduce to gather the whole Vi, matrix,
instead, we use MPI_Reduce to transfer part of Vi
matrix to each MPI task based on the index.

Owing to these attempts we eliminate part of the data
dependencies, to be detailed, we can split the matrix into
small blocks and perform GEMM manually to these small
blocks. The basic flow of GEMM and Reduce is shown in
Figure 4 and ,the pipeline of GEMM and reduce after our
optimization are shown in Figure 5. Once each block gets
the result, we can immediately reduce the block matrix to
each MPI task by MPI_ Reduce. Afterward we will get the
whole Vi but distributed in each MPI task.

MPI_Reduce
MPI rank 1 I v - . —

Fig. 4. The basic implementation of GEMM and Reduce, take MPI
task = 2 as example

C. Mixed-precision computation

Since the element Vi, in the Hamiltonian matrix of
the LR-TDDFT equation is much smaller than D, the
excitation energy of LR-TDDFT is significantly affected
by the energy level difference, in this way we can relax
the accuracy in the construction process of Viye to a
certain extent. To further optimize the code while re-
maining computational accuracy, we test different levels of
mixed precision. As a result, we find an accurate and fast
prescription that uses single precision in GEMM and FFT
operations but uses double precision in initializing P,.(r) in
real space and diagonalizing the LR-TDDFT Hamiltonian
H. To be exact, the ¥ matrix held by each MPI task in row
block partition is converted from double precision to single
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precision before the GEMM and FFT, when carrying the
other numerical calculations, we transfer the output matrix
to double precision to maintain accuracy.

We compare the mixed-precision implementation with
the double precision model by using a typical configuration
of a silicon crystal system composed of 1024 atoms and
with N,. = 128 x 128 = 16384, and observe a deviation of
root mean square 0.29e¢V /molecule in the energy prediction.
Since these deviations are much less than the error caused
by local-density approximation, so the mixed precision
implementation is of satisfactory accuracy. In terms of
speed and GPU memory requirement, the kernel with
mixed precision is ~1.7 times faster than and consumes
50% less memory than the double precision version. After
testing a lot of other mixed precision plans, we remark
that although a fully-float implementation is more power
efficient on the NVIDIA V100 GPU, our tests show that,
due to the limited representation range with 32 binary bits,
the corresponding attempt cannot preserve the required ac-
curacy of the excited energy and wavefunctions. Therefore,
at this moment, we cannot take advantage of the merits of
the fully-float implementation.

D. Memory access optimization

In the baseline GPU implementation, matrix fxc and
vector Eigenvalue are stored in the GPU global memory
for the penultimate part of the computation to calculate
frce+ = Eigenvalue; — Eigenvaluey,. However, GPU global
memory has high latency and low bandwidth compared
to the shared memory inside each GPU streaming mul-
tiprocessor (SM). We remark that fzc is calculated plus
the element-wise product of Figenvalue; — Figenvaluey,.
To improve the performance, we use the low-latency on-
chip shared memory to replace the GPU global memory
to store fzc and Eigenvalue. Then, when calculating fxc,
the algorithm accesses the shared memory that is much
faster than accessing GPU global memory.

E. Single precision MPI

After the above optimizations of LR-TDDFT, we found
that as the number of MPI task grows, the wall-clock time
of LR-TDDFT is dominated by 2 steps of MPI__Alltoall op-
eration. This result is quite intuitive because MPI__Alltoall
sends data from all to all processes, meanwhile, the data
is very large as the size of input increases. To reduce
the communication time of the data transform between
schemes in Figure 1, we use the single precision format for
sending and receiving the wavefunctions, which reduces the
communication throughput by half. We also mention that
the single precision format is only used in the MPI__Alltoall
communication, so wavefunctions will be converted back
to the double precision format for computation. We find
that this optimization leads to negligible deviation in
the accuracy of the result in the LR-TDDFT, in our
experiment, the error of the total energy is as little as
10~"eV /molecule for a silicon system with 1024 atoms and

Nye = 128 x 128 = 16384, compared to the double precision
implementation.

Figure 6 shows the reduction of the computational time
associated with different steps of optimization. The testing
system is a 1024 silicon atoms system shown in Figure 7,
which will be discussed in section V. The naive CPU version
of LR-TDDFT uses dual Intel Xeon E5-2695 12-core sockets
and in our tests we use 6 CPU core bound to each MPT task.
The GPU version uses dual V100 GPU in NVIDIA DGX-1
server [17], and is around 6.7 times faster than the CPU
version in terms of LR-TDDFT calculation. We find that
step 1 (point-to-point replacemtent) leads to most of the
performance improvement from CPUs to GPUs, and this
step is responsible for most of the implementation efforts
as well.

1000 8
B Computation time —e—- Speedup
- MPI time 7
4 A
800 v
,// M6
x4
7
600 1 e F5
s
v
s
e - B 4
______ --
400 A e
Va F3
7/
7
200 e F2

24 CPU  Point-to Mixed Memory Single Overlap
-point  precision access precision
computation optimize MPI

Fig. 6. Wall clock time for LR-TDDFT calculation with different
steps of optimizations for a system with 1024 silicon atoms. The CPU
version uses 24 CPU cores, and the GPU version uses 2 GPUs

IV. Numerical Result and Analysis

In this section, we report the numerical results, including
the speedup, strong and weal scaling performance of the
LRTDDEFT code with several sizes of bulk silicon systems.
Different size of testing systems are generated to faith-
fully indicate the performance of LR-TDDFT with GPU
accelerated, including silicon systems with 64, 256, 512,
1024, 2048 atoms which will be later remarked as Si64,
Si256, Si512, Sil024 and Si2048, respectively. In our tests,
we perform the number of valence and conduction orbitals
N, = N, = 180, thus the height and length of the LR-
TDDFT Hamiltonian are both N., = 180 x 180 = 32400.
We perform all numerical tests on NVIDIA DGX-1 server
shown in Figure 8. DGX-1 server has dual 20-Core Intel
Xeon E5-2698 CPU sockets running at 2.2 GHz and 8
Tesla V100 GPU connected via PCle 3.0. V100 GPUs
are connected via NVLink with a bandwidth of 20GB/s.
The Tesla V100 GPU has 16 GB device memory and
5120 CUDA cores running at 1.38 GHz, which provide
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Fig. 5. Overlap of computation and communication, this figure shows the pipeline of GEMM and Reduce, we split the matrices mannualy
to calculate several small block matrices. Take MPI task = 2 as example

MPI rank 1 iij X L*D

a theoretical peak performance of 7.8TFLOPS double [ ]
precision operations. The operating system of the server
is 64-bit Red Hat Enterprise Linux and the system has in T4
total 512GB DRAM memory. o
In this paper, the CPU algorithm and GPU algorithm are ol

running on C++ and CUDA 10.0, respectively. Which we e a a 4 o
test GPU versions of LR-TDDFT, each MPI task is bound PCle Switches

to an individual GPU and each experiment is executed four Il
times and we report the average results.

CPU NIC NIC CPU NIC

-

4

PCle Switches

A. Speedup

At first, we perform experiments with several sizes of
silicon systems to make sure our implementation works
well on systems of different sizes. Three versions of the
algorithm are executed for comparison: the CPU version,
the unoptimized GPU version, and the optimized GPU
version. The unoptimized and optimized GPU version
stand for the point-to-point approach and the final im-
plementation, respectively. The CPU version uses 20 CPU Nk File L
core and 5 MPI tasks, so each MPI task is bound to 4 CPU

Fig. 8. The architecture of NVIDIA DGX-1.

: R
core and the data dispatch and multithread execution are
2 ottt 9 provided by OpenMP. Figure 9 shows the running time and
o : g speedups of LR-TDDFT calculation running on the Tesla
ag » V100 GPUs and CPUs, respectively. The optimized GPU
» algorithm achieves an average of 5.75x and up to 6.94x
5 ' i %'4"’, speedups versus CPU version. In contrast, the unoptimized
. % RRR GPU algorithm achieves an average of 3.01x and up to
‘*I ‘ 3.20x speedups CPU version. The results demonstrate the
. R RR AN effectiveness and universality of the optimization strategies
in Section III. The figure also shows that the speedups keep
Fig. 7. Bulk silicon systems with 1024 atoms increasing with the growing of system size. However, the
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maximum system size that can be tested on the GPU is 1.0
. .. 200 A
Si2048 due to limited GPU memory.
m=m Wall clock time 0.9
1754
—e— Parallel efficiency | 0.8
30 2000 150 T
—e— CPU time I GPU-unoptimazed Speedup L 0.7 2
—%— GPU-unoptimazed time mm® GPU-optimazed Speedup [ 1750 = 1251 ’ :g
251 a- GPU-optimazed time @ L o6 %
- 1500 £ 100 5
= =
201 F0.5 Q8
751
a 1250 _ 8
=3 wn
° 3 50 r0.4
@ 15 - 1000 g
& = 25 0.3
750 '
104
0- - 0.2
[ 500 1 2 4 6 8
5 Number of GPUs
250
0- 64 > 51o 1024 04 -0 Fig. 10. Strong scaling: the total time and parallel efficiency of GPU-
Sie Si256 Si5 Si10 5i2048 optimized version using different number of GPUs.
Fig. 9. Running time and speedups of difference sizes of testing

TABLE 1

systems on two platforms. GPU-unoptimized indicates our naive Wall clock time of different scale of testing system with 2 GPU

implement and GPU-optimized represents our final version after 4
steps of optimizations

Testing system : QPU Time —
Unoptimized | Optimized
Si64 45.98 34.13
B. Strong Scaling Si256 94.68 53.51
Si512 111.6 69.53
The most significant concern for the LR-TDDFT calcu- Si1024 260.95 121.68
lations is the strong scalability on heterogeneous multi- 5i2048 503.66 2219

GPU architectures, which reflects how much does the
growth of hardware resources takes effect for a determined
system as adding the numbers of GPUs. We test the GPU-
optimized version of LR-TDDFT on bulk silicon systems
with 1024 atoms and we evaluate strong scalability by
parallel efficiency defined in Equation 7, and the speedup
is compared with wall clock time in single GPU.

V. Related Work

In ground state electronic structure calculations, vari-
ous highly efficient HPC KS-DFT software packages use
GPU to reduce computation time such as ABINIT [18],
BigDFT [19], Octopus [2], PWmat [20], [21], Quantum
ESPRESSO [22], DGDFT [15], [23] and VASP [24], [25],
which are beneficial to take full advantage of the massive
parallelism available on modern heterogeneous systems.
But only several HPC software packages for excited state
electronic structure calculations have been developed, such
as NWChem [26], BerkeleyGW [27] and QChem [28], due to
such ultrahigh computation and memory cost in the excited
state electronic structure calculations, especially with plane
wave basis set. In particular, Jia et al. [29] accelerate hybrid
functional rt-TDDFT calculations, which is another form
of TDDFT, using the parallel transport gauge formalism
by GPU on Summit, their implementation can efficiently
scale to 786 GPUs for a large system with 1536 silicon
atoms.

speedup
Number of GPU

Efficiency = (7)
As we can see from Figure 10, parallel efficiency goes
down when the number of GPU increases. The main reason
for this phenomenon is that since we distribute matrices
into each MPI task equably which bounds to a GPU
and the size of each matrix performed GEMM and FFT
becomes smaller when we use more GPUs, so GPU cannot
effectively use its computing power. But parallel efficiency
is still above 55%, which is quite acceptable since in the
calculation it exists many times of global communication.

C. Weak Scaling

Another important criterion for the LR-TDDFT calcu- VI. Conclusion and Outlook

lations is the weak scalability, which reflects the parallel
performance for a scaled problem size along with a fixed
number of GPU. Different sizes of silicon systems are tested
on 2 V100 GPUs between Unoptimized and Optimized
GPU versions. Table I show that compared with Si512
system, Si1024 and Si2048 achieve almost linear scaling in
optimized GPU version, which demonstrates the scalability
of our implementation.
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In this paper, we propose an Efficient multi-GPU Im-
plementation for linear-response time-dependent density
functional theory calculation to compute the excitation
energies in molecules and solids with the plane wave basis
set. We carefully design the mathematical approximation
model to reduce the computational cost while retaining
chemical accuracy. In our naive CPU design, we perform
different data partition and task distribution schemes to
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ensure the flexibility and efficiency of the computation
process. Meanwhile, hybrid MPI-OpenMP programming
method is used to achieve high scalability in modern
multi-core computing system. The most challenging part
of LR-TDDFT calculation is to generate the LR-TDDFT
Hamiltonian, which usually occupies 80% of the whole wall
clock time, so we implement a multi-GPU version by port
the most time consuming part to multi-GPU and attempt
several optimizations to fully tap the potential of modern
heterogeneous GPU system. We perform numerical testing
among different size of systems, and GPU version achieves
an average of 5.75x and up to 6.94x speedups versus CPU
version, and both strong and weak scaling keep at a high
level.

Looking forward to our future work, there will still
remain a lot of challengs to further explore the excited
state properties of molecules and solids with modern het-
erogeneous computing architecture. On one hand, we will
afterward seek the method to effectively use the massively
computing power in Sunway Taihulight supercomputer
[30] within LR-TDDFT calculation. On the other hand,
the limitation of LR-TDDFT is that the accuracy cann’t
meet precise demand of simulated spectrum, so we try to
boost the accuracy of excited state properties by using more
elaborate mathematical method like GW/BSE [31].
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