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High performance computing (HPC) is a powerful tool to accelerate the Kohn–Sham density functional
theory (KS-DFT) calculations on modern heterogeneous supercomputers. Here, we describe a massively
parallel implementation of discontinuous Galerkin density functional theory (DGDFT) method on the
Sunway TaihuLight supercomputer. The DGDFT method uses the adaptive local basis (ALB) functions gen-
erated on-the-fly during the self-consistent field (SCF) iteration to solve the KS equations with high pre-
cision comparable to plane-wave basis set. In particular, the DGDFT method adopts a two-level
parallelization strategy that deals with various types of data distribution, task scheduling, and data com-
munication schemes, and combines with the master–slave multi-thread heterogeneous parallelism of
SW26010 processor, resulting in large-scale HPC KS-DFT calculations on the Sunway TaihuLight super-
computer. We show that the DGDFT method can scale up to 8,519,680 processing cores (131,072 core
groups) on the Sunway TaihuLight supercomputer for studying the electronic structures of two-
dimensional (2D) metallic graphene systems that contain tens of thousands of carbon atoms.

� 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

The Kohn–Sham density functional theory (KS-DFT) [1,2] is the
most powerful methodology to perform first-principles calcula-
tions for studying the electronic structures of molecules and solids.
However, conventional KS-DFT calculations show cubic computa-

tional complexity O N3
� �

with respect to the system size N. The

computational cost and memory usage of KS-DFT calculations
increase rapidly as the system size and the KS-DFT calculations
are only limited to small systems containing hundreds of atoms.
Therefore, the KS-DFT calculations become prohibitively expensive
for first-principles materials simulations on large-scale systems
that contain thousands of atoms.

Several low-scaling methods have been proposed for reducing
the computational cost of KS-DFT calculations, such as linear scaling
O Nð Þ methods [3–5], divide-and-conquer (DAC) methods [6] and
fragment molecular orbital (FMO) methods [7]. These low-scaling
methods principally rely on the nearsightedness principle in mole-
cules and semiconductors, and have beenwidely implementedwith
small localized basis sets in real-space, such as Gaussian [8] and
numerical atomic orbitals [4], resulting in the sparse Hamiltonian
in real space. Based on these low-scaling methods, several highly
efficient KS-DFT materials simulation software packages have been
developed, such as SIESTA [9], CP2K [10], CONQUEST [11] and HON-
PAS [12], which are beneficial to take full advantage of the massive
parallelism available on modern high performance computing
(HPC) architectures due to the local data communication of sparse
Hamiltonian generated in small localized basis sets.

However, the accuracy of these low-scaling methods strongly
depends on the parameters of localized basis sets, and is difficult
to be improved systematically, compared to large uniform basis
sets, such as plane-waves. Several KS-DFTmaterials simulation soft-
ware packages have been developed by using plane wave basis set,
such as VASP [13] and QUANTUM ESPRESSO [14]. But such plane
wave basis set always requires large number of basis functions for
the high accuracy and is difficult to take advantage of the HPC

https://doi.org/10.1016/j.scib.2020.06.025
mailto:han@ustc.edu.cn
mailto:jlyang@ustc.edu.cn
https://doi.org/10.1016/j.scib.2020.06.025
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


W. Hu et al. Science Bulletin 66 (2021) 111–119
calculations on modern heterogeneous supercomputers due to the
large all-to-all data communications of dense Hamiltonian [15].

The recently developed discontinuous Galerkin density func-
tional theory (DGDFT) [16–20] aims to combine the advantages
of both small localized and large uniform basis sets, which can
reduce the number of basis functions similar to numerical atomic
basis sets, while maintaining the high precision comparable to that
of plane-wave basis set. The DGDFT method is discretized on an
adaptive local basis (ALB) set [16]. Its unique feature is that each
ALB function is strictly localized in a subdomain in real space,
which results in the sparse Hamiltonian in unchanged block-
tridiagonal structure for both metallic and semiconducting sys-
tems. Therefore, the DGDFT method is beneficial to take full advan-
tage of the massive parallelism available on modern heterogeneous
supercomputers [17].

It should be noticed that such parallel KS-DFT calculations
increasingly require more complicated software development to
achieve better parallel performance and scalability across the
vastly diverse ecosystem of modern heterogeneous supercomput-
ers, especially, the widely used X86 CPU (Central Processing Unit)
architectures. Large-scale KS-DFT calculations have been per-
formed in CP2K [10] and CONQUEST [11] on the Cray supercom-
puter with X86 architecture. In particular, DGDFT has
demonstrated scaling to 128,000 cores on the Edison supercom-
puter at the USA NERSC platform for performing large-scale KS-
DFT calculations on semiconducting phosphorene systems with
14, 000 atoms [17].

In China, the Sunway TaihuLight [21] is a new generation of the
fastest supercomputers in the world, which uses the Chinese
home-grown SW26010 processors based on a new Sunway mas-
ter–slave heterogeneous architecture. Different from the widely
used X86 CPU architectures, each master processing core can be
effectively multi-thread accelerated by 64 slave processing cores
on the SW26010 processor, similar to the multi-thread (64
threads) parallelism that bridges the gap between the Open
Multi-Processing (OpenMP) (16–32 threads) and Graphics Process-
ing Unit (GPU) (256–512 threads) parallel programming. Such
hardware advantage requires the KS-DFT software packages to be
reimplemented into the new Sunway TaihuLight supercomputer.

In the present work, we describe amassively parallel implemen-
tation of the DGDFT method on the Sunway TaihuLight supercom-
puter. We demonstrate that the DGDFT method adopts a two-level
parallelization strategy thatmakes use of different types of data dis-
tribution, task scheduling, and data communication schemes, and
combines with the feature of master–slave multi-thread heteroge-
neous parallelism of SW26010 processors, resulting in extreme-
scale HPC KS-DFT calculations for tens of thousands of atoms using
millions of cores on the Sunway TaihuLight supercomputer.
Fig. 1. A 2D graphene system G180 system in 2D partitioned into 16 (4 � 4) equal-
sized elements. (a) An extended element Q associated with the central element E ,
2. Methodology

In this section, we describe the theoretical algorithms and par-
allel implementation of DGDFT on the Sunway TaihuLight super-
computer in detail. The key spirit of DGDFT is to discretize the
global KS equations by using the adaptive local basis (ALB) set in
a discontinuous Galerkin (DG) framework [16]. The scalable imple-
mentation of DGDFT is based on the two-level parallelization strat-
egy of DGDFT combining with the master–slave multi-thread
heterogeneous parallelism of SW26010 processor on the Sunway
TaihuLight supercomputer.
6 6

and Q6 includes 9 elements in a 2D mesh (E1; E2; E3; E5; E6; E7, E9; E10, and E11). There
are four surfaces surrounding the central element E6 with boundary integrals
highlighted by green arrows. The first ALB function belonging to the element E4 is
plotted with blue isosurfaces (0.01 Hartree/Bohr3) in top and (b) side views. (c) The
block-tridiagonal sparse structure of DG Hamiltonian matrix HDG. The blocks with
nonzero values are highlighted with red areas.
2.1. Discontinuous Galerkin density functional theory

The basic idea of DGDFT is the domain decomposition algorithm
for generating a new type of basis sets to solve the KS equations
112
[16]. In the DGDFT method, we partition the global domain X into
a number of subdomains (called elements), denoted by
T ¼ Ekf gMk¼1 to a collection of all elements (M is the total number
of elements). In the current version of DGDFT, we use the periodic
boundary condition for both molecules and solids. Therefore, each
surface of the element must be shared between two neighboring
elements, and S denotes the collection of all the surfaces.

An example of partitioning the global domain of a graphene sys-
tem into a number of elements is given in Fig. 1. This is a 2D gra-
phene system G180 containing 180 carbon atoms. According to the
grid points in real space, the global domain is partitioned into 16
equal-sized elements in a 2D 4 � 4 mesh along the x and y direc-
tions, respectively. An extended element Q6 is associated with
the central element E6, and Q6 includes 9 elements,
E1; E2; E3; E5; E6; E7; E9; E10, and E11. There are four surfaces sur-
rounding the central element E6 with boundary integrals high-
lighted by green arrows. We solve small local KS equations on
this extended element Q6 only containing a few atoms and obtain
a set of eigenfunctions. Then we restrict and truncate these eigen-
functions into the central element E6 and obtain a new set of ALB
functions only localized inside the element E6, which are adaptive



Fig. 2. Flowchart of the DGDFT method. There are four time-consuming parts in
DGDFT, including generating the ALB functions in the inner SCF iterations,
constructing and diagonalizing the DG Hamiltonian (DIAG, CheFSI and PEXSI),
computing the electron density, total energy and atomic forces in the outer SCF
iterations. HDG and HQk represent the global and local (HQk/Qk

k;j ¼ kQk
k;j /

Qk
k;j on Qk) KS

Hamiltonian, respectively. qin and qout represent the initial and output density,
respectively.
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to change according to the atomic and environmental information
during the SCF iterations when solving the global KS equations. For
example, the first ALB function belonging to the element E4 is plot-
ted in Fig. 1a and b. This ALB function is strictly localized inside E4

and is therefore discontinuous across the boundary of elements,
resulting in four surfaces surround this element with boundary
integrals. Therefore, the ALB functions can be acted as a new type
of localized and orthogonal basis set to discretize the global KS
equations, resulting in a sparse block-tridiagonal structure of DG
Hamiltonian matrix [17] as shown in Fig. 1c.

It should be noticed that the framework of DGDFT to solve the
global KS equations is similar to the standard DFT methods dis-
cretized on atomic localized basis sets, such as numerical atomic
basis orbitals implemented in SIESTA [9]. The key spirit of DGDFT
is to use the ALB functions to discretize the Kohn–Sham equations.
In particular, the ALB functions are orthogonal, localized, and com-
plete basis set that combineswith the advantages of both numerical
atomic basis orbitals (localization) and plane waves (orthogonality
and completeness). Such features make the DG Hamiltonian keep
unchanged in a sparse block-tridiagonal structure during the SCF
iterations even for metallic systems. There are several new diago-
nalization methods implemented in DGDFT, such as CheFIS [19]
and PEXSI [22], to take advantage of such block-sparse DG Hamilto-
nian in the framework of DGDFT. Therefore, there are four time-
consuming parts in DGDFT, including generating the ALB functions,
constructing and diagonalizing the DGHamiltonian, as well as com-
puting the electron density, total energy and atomic forces [17]. For
the flowchart of DGDFT, except for the first step to generate the ALB
functions on-the-fly during the SCF iterations, other three parts of
DGDFT are similar to SIESTA. The flowchart of the DGDFT method
for solving the global KS equations is given in Fig. 2.

2.1.1. Generating ALB functions
The key spirit of DGDFT is to generate the ALB functions on-the-

fly, which are adaptive to change according to the atomic and envi-
ronmental information during the SCF iterations when solving the
global KS equations. In order to generate the ALB functions on each
element Ek, we construct an extended element Qk consisting of a
central element Ek and surrounding a set of buffer elements sur-
rounding Ek. An example of partitioning the global domain of a
2D graphene system is shown in the Fig. 1a.

On each extended element Qk, we solve the local KS equations
defined as

HQk/Qk
k;j ¼ �1

2
Dþ VQk

eff þ VQk
n‘

� �
/Qk

k;j ¼ kQk
k;j/

Qk
k;j ; ð1Þ

where HQk and /Qk
k;j are the local Hamiltonian and wavefunctions on

the extended element Qk. These local wavefunctions /Qk
k;j satisfy the

orthonormality condition. VQk
eff ¼ VQk

loc þ VQk
H þ VQk

xc is the effective
potential on the extended element Qk, including the local pseu-

dopotential VQk
loc, the Hartree potential VQk

H and the exchange–corre-

lation potential VQk
xc . VQk

n‘ ¼PQk
I;‘ cI;‘bI;‘bI;‘ is the nonlocal

pseudopotential (bI;‘ is the ‘-th projected function of the atom I
and cI;‘ is corresponding real scalar).

In the current framework of DGDFT, these local KS equations are
discretized on the standard plane-wave basis set with the same
accuracy with QUANTUM ESPRESSO [14]. We implement a self-
contained module called PWDFT (Plane-wave density functional
theory) [23] in DGDFT. When using plane wave basis set, it is viable
to use the iterative algorithms to solve the KS-DFT equations
HX ¼ XE. Because the dimension of Hamiltonian matrix H is above
NQk

r ¼ 106 (NQk
r is the number of grid points in real space of Qk),

only a percentage of amounts to more than 100 eigenvalues even
for small systems containing tens of atoms. There are several iter-
113
ative algorithms have been developed to solve the KS-DFT equa-
tions discretized on the standard plane-wave basis set, such as
Davidson [24] and LOBPCG [25] algorithms.

We compute the lowest Jk eigenvalues kQk
k;j

n oJk

j¼1
and correspond-

ing eigenfunctions /Qk
k;j

n oJk

j¼1
on each extended element Qk in

PWDFT. We restrict and truncate /Qk
k;j

n oJk

j¼1
from the extended ele-

ment Qk to the element Ek, and obtain the truncated and orthogo-

nal vectors /k;j

� �Jk
j¼1 on each element Ek, which are the so-called

ALB functions. In the current framework of DGDFT, we set the same
number Jk ¼ Jb ¼ Nb=M of ALB functions on each element, where Nb

is the total number of ALB functions and M is the number of ele-
ments partitioned in the global domain. Furthermore, the number
of ALB functions used in each element is Jb � 4—40Ne=M, similar to
the case of Gaussian and numerical atomic basis sets. It should be

noticed that the ALB functions /k;j

� �Jb
j¼1 are truncated to zero out-

side of Ek and normalized orthogonally on corresponding local ele-
ment Ek, which leads to their discontinuity across the boundary of
Ek. Therefore, the ALB functions are orthogonal, localized, and com-
plete basis sets that combine the advantages of both atomic local-
ized basis sets (localization) and plane-wave basis sets
(orthogonality and completeness).

In PWDFT, our default choice of the KS-DFT eigensolver is the
LOBPCG [25] algorithm for small systems always containing less
than 100 atoms. The LOBPCG algorithm iteratively solves the
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KS-DFT eigenvalue problem of HX ¼ XE (X ¼ xi rð Þf gJbi¼1 2 RN
Qk
r �Jb ) by

searching the minimum of the Tr XTHX
h i

with the orthogonality

constraint XTX ¼ I 2 RJb�Jb in a subspace spanned by 3Jb vectors

X;W; P½ � 2 RN
Qk
r �3Jb . The eigenvectors X can be updated as

X ¼ XCX þWCW þ PCP ; ð2Þ
where W is a preconditioned residual defined as

W ¼ TR ¼ T HX � X XTHX
� �� �

; ð3Þ

where R ¼ HX � X XTHX
� �

is the residual, and T is the Teter precon-

ditioner widely used in the plane-wave basis set. P is the conjugate
direction. The coefficients CX ;CW and CP can be computed with the
lowest Jb eigenpairs of the projected 3Jb � 3Jb generalized eigen-
value problem

STHSC ¼ STSCE; ð4Þ
where S ¼ X;W; P½ � is the trial subspace and C ¼ CX ;CW ;CP½ �T are the
coefficients.

2.1.2. Constructing DG Hamiltonian
For the global KS equations, the wavefunctions wi rð Þ are

expanded into a linear combination of ALB functions /k;j

� �Jb
j¼1

defined as

wi rð Þ ¼
XM
k¼1

XJb
j¼1

Ci;k;j/k;j rð Þ: ð5Þ

Under the ALB functions, solving the global Kohn–Sham equa-
tions becomes a linear eigenvalue problemX
k;j

HDG
k0 ;j0 ;k;jCi;k;j ¼ kiCi;k0 ;j0 ; ð6Þ

where HDG is the KS Hamiltonian matrix defined as

HDG
k0 ;j0 ;k;j ¼

1
2

r/k;j0 ;r/k;j

� 	
T
þ /k;j0 ;Veff/k;j

� 	
T

� �
dk;k0

þ
X
I;‘

cI;‘ /k0 ;j0 ; bI;‘
� 	

T
bI;‘;/k;j

� 	
T

 !

þ�1
2

/k0 ;j0

 �
 �

; r/k;j

� �� �� 	
T

� 1
2

r/k0 ;j0
� �� �

; /k;j


 �
 �� 	
T
þa /k0 ;j0


 �
 �
; /k;j


 �
 �� 	
T
; ð7Þ

where Veff denotes the effective one-body potential at the outer SCF
iterations, including local pseudopotential V loc, Hartree potential VH

and the exchange–correlation potential Vxc q½ �. bI;‘ and cI;‘ corre-
spond to the nonlocal pseudopotential. For each atom I, there are
LI functions bI;‘, called the projection vector of the nonlocal pseu-
dopotential. The parameter cI;‘ is a real valued scalar. �; �h iT is the
sum of the inner product on each element, and �; �h iT is the sum
of the inner product on each surface. The symbols �f gf g and �½ �½ � rep-
resent the average and the jump operators across surfaces respec-
tively used to account for the discontinuity of the basis functions.

In particular, the submatrix HDG
k0 ;j0 ;k;j is the k0; k

� 
-th matrix block

of HDG 2 RJb�Jb . These three group terms in Eq. (7) reflect different
contributions to the DG Hamiltonian. The first group term repre-
sents the kinetic energy and the local pseudopotential, and only
contributes to the diagonal blocks HDG

k0 ;j0 ;k;j. The second group term
represents the nonlocal pseudopotentials, and contributes to both
the diagonal and off-diagonal blocks of HDG. These two group terms
are similar to the case of atomic localized basis sets, such as
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numerical atomic basis orbitals implemented in SIESTA. However,
the third group term consists of the contributions from boundary
integrals different from SIESTA, and contributes to both the diago-
nal and off-diagonal blocks of HDG as well. Each boundary term
involves only two neighboring elements by definition as plotted
in Fig. 1a. Therefore, HDG is a block-tridiagonal sparse matrix and
the nonzero matrix blocks correspond to interactions between
neighboring elements as shown in Fig. 1c.

2.1.3. Diagonalizing DG Hamiltonian
After the DG Hamiltonian is constructed by using the ALB func-

tions, the next step is to solve a standard eigenvalue problem to
diagonalize the DG Hamiltonian and obtain other basic physical
quantities, such as electron density, total energy and atomic forces.
The conventional method is to directly and explicitly diagonalize
the DG Hamiltonian by using the standard parallel linear algebra
software packages for dense matrices, such as the ScaLAPACK sub-
routine PDSYEVD (referred as DIAG). The DIAG method is expen-
sive and not scalable on modern heterogeneous supercomputers,

because its computational cost scales as O N3
b

� �
and its parallel

scalability is limited to hundreds of cores [17,18]. In the current
framework of DGDFT, we utilize the Chebyshev polynomial filtered
subspace iteration (CheFSI) [26] algorithm to solve the DG eigen-
value problem HDGC ¼ KC, where HDG 2 RNb�Nb and C 2 RNb�Ne [19].

The CheFSI algorithm uses a Chebyshev polynomial pm kð Þ to
construct the map eigenvalues at the low end of occupied states

HDG to the dominant eigenvalues of pm HDG
� �

. The exponential

growth property of the Chebyshev polynomials outside the region
[–1,1] can be used to obtain the wanted occupied states, while
other unwanted regions are damped in comparison.

During each CheFSI iteration, pm HDG
� �

2 RNb�Nb can be applied

to a block of vectors X ¼ xif gNe
i¼1 2 RNb�Ne by using the three-term

recurrence satisfied by Chebyshev polynomials, written as

yi;k;j ¼
XM

k0¼1

XJb
j0

HDG
k;j;k0 ;j0xi;k0 ;j0

¼
X

k02N kð Þ

XJb
j0

HDG
k;j;k0 ;j0xi;k0 ;j0 ;

ð8Þ

where N kð Þ denotes the collection of the neighboring elements of
the element Ek. This dense matrix–matrix multiplication can be car-
ried out independently over the various columns of X, which takes
advantage of the embarrassingly parallel nature of the problem by
distributing the columns among separate processing elements.

The key step in the CheFSI algorithm is to project the DG Hamil-
tonian HDG onto the occupied subspace

Ĥ ¼ ŶTHDGŶ; ð9Þ

where bY is the orthonormal vectors for the Chebyshev polynomial
filtered block of vectors Y ¼ yif gNe

i¼1 2 RNb�Ne . The eigenvalues K

and eigenvectors X 2 RNb�Ne can be computed by directly diagonal-

izing the projected DG Hamiltonian bH 2 RNe�Ne .
There are three advantages for the CheFSI algorithm to take

advantage of the features of ALB functions (Orthogonality and
localization) and block-tridiagonal sparse DG Hamiltonian matrix.
Firstly, because the ALB functions are orthogonal, we can readily
employ the orthogonal CheFSI algorithm, which avoids to compute
and orthogonalize the overlap matrix. Secondly, because the ALB
functions are localized and completed basis sets, the number (Nb)
of ALB functions is comparable to localized basis sets, such as



Fig. 3. Parallel data distribution, task scheduling, and data communication of
DGDFT. (a) 2D MPI process grid for two level parallelization strategy of DGDFT,
especially for constructing and diagonalizing the DG Hamiltonian matrix
HDG 2 RNb�Nb . M is the number of elements partitioned in the system. Pe is the
number of MPI processes used in each element. (b) Band parallelization with
column cyclic partition (for FFT) and (c) grid parallelization with row block
partition (for GEMM), especially for the tall-and-skinny wavefunction matrix
UQk 2 RN

Qk
r �Jk (Jk ¼ Jb � 4—40Ne=M) on the extended element Qk in PWDFT.
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Gaussian and atomic numerical basis sets. Compared to the cubic
scaling O(N3

b) of the DIAG method, the CheFSI method can reduce

the computational cost to O(NbN
2
e þ N3

e ). It should be noticed that
Nb � 4—40Ne for the ALB functions in DGDFT. Therefore, the CheFSI
method can speed up more than two orders of magnitude faster
than the DIAG method. Finally, orthogonal and localized ALB func-
tions result in the block-sparse structure of the DG Hamiltonian
matrix even for metallic systems. This feature can reduce the com-
putational cost of the DG Hamiltonian matrix applied to a block of
dense vectors with low data communications.

The third method for diagonalizing the block-tridiagonal sparse
DG Hamiltonian HDG is the pole expansion and selected inversion
(PEXSI) technique [27]. The PEXSI method is more efficient and
scalable than the DIAG and CheFSI methods, because the PEXSI
method does not require computing eigenvalues and eigenvectors
of HDG. The PEXSI method is designed for sparse matrix operations
to take advantage of massively parallel supercomputers with high
scalability, which can scale up to 100,000 processors [17,18]. But
the PEXSI method is difficult to be implemented and ported on
the Sunway TaihuLight supercomputer. Therefore, we choose the
CheFSI method to diagonalize the DG Hamiltonian in DGDFT in this
work.

2.1.4. Computing electron density

After constructing the HDG matrix and solving the eigenvalue
problem, the electron density can be evaluated from

q rð Þ ¼PNe
i¼1jwi rð Þj2

¼PM
k¼1

PJb
j¼1

PM
k0¼1

PJb
j0¼1

/k;j rð Þ/k0 ;j0 rð Þ PNe

i¼1
Ci;k;jCi;k0 ;j0

� �

¼PM
k¼1

PJb
j¼1

PM
k0¼1

PJb
j0¼1

/k;j rð Þ/k0 ;j0 rð ÞPk;j;k0 ;j0 ;

ð10Þ

where P is the density matrix approximated as a matrix function of
HDG without knowing Ci;k;j explicitly, defined as

Pk;j;k0 ;j0 ¼
XNe

i¼1

Ci;k;jCi;k0 ;j0 ; ð11Þ

where, each ALB function /k;j xð Þ is strictly localized in the element

Ek to eliminate the cross terms involving both k and k0. As a result,
the selected blocks, or more specifically, the diagonal blocks of the
density matrix Pk;j;k;j0 are needed to evaluate the electron density.

Other cheap parts, such as total energy [16] and atomic forces
[20], can be efficiently computed in the formwork of DGDFT. The
total energy in the formwork of DGDFT can be written as

EDG wif gð Þ ¼ 1
2

XNe

i¼1

rwi;rwih iT þ Veff ;qh iT þ
XNA

I¼1

XLI
‘¼1

cI;‘

�
XNe

i¼1

j bI;‘;wi

� 	
T
j2 �

XNe

i¼1

rwif gf g; wi½ �½ �h iT

þ a
XNe

i¼1

wi½ �½ �; wi½ �½ �h iT: ð12Þ

The atomic forces in the DGDFT method are computed with the
Hellmann–Feynman theory, written as

FHF
I ¼

Z
qloc;I r�RIð ÞrVH rð Þdrþ2

XLI
‘¼1

Tr Vnl;I;‘P

 �þX

J–I

ZIZJ

jRI�RJj3
RI �RJ
� 

;

ð13Þ
where qloc;I is the local pseudocharge of atom I. It should be noticed
that the computational cost of the Hellmann–Feynman force in
DGDFT scales linearly with respect to the system size [20].
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We have demonstrated that high plane-wave accuracy in the
total energy and atomic forces can be achieved with a very small
number (4—40) of basis functions per atom in the formwork of
DGDFT, compared to fully converged plane-wave calculations [17].
2.2. Parallel implementation of DGDFT

We present the scalable implementation of the DGDFT method
based on the two-level parallelization strategy combining with the
multi-thread parallelism of Sunway master–slave heterogeneous
architecture, thus resulting in extreme-scale HPC DFT calculations
on the Sunway TaihuLight supercomputer.
2.2.1. Two level parallelization strategy of DGDFT
In the framework of DGDFT, there is two-level of parallelization

that deals with different types of data distribution and communi-
cation, and task scheduling schemes as shown in Fig. 3. The DGDFT
method use the Message Passing Interface (MPI) for parallel pro-
gramming to deal with the data communications between differ-
ent MPI processes.

The first main level is called inter-element parallelization
between neighboring elements. The main computation of this level
is to construct the DG Hamiltonian matrix by using the ALB func-
tions as shown in Fig. 3a, which uses the column block MPI grid
partition for the global 2D MPI process grid. Because the ALB func-
tions are orthogonal and localized basis sets, the DG Hamiltonian
matrix can keep in a sparse block-tridiagonal structure unchanged
during the outer SCF iterations even for metallic systems. The local
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data communication between neighboring elements is dealt with
the MPI programming. In the current framework of DGDFT, the
number of MPI processes in this level is fixed and equal to the
number M of elements. It should be noticed that this level of
inter-element parallelization in DGDFT is highly scalable due to
the local data communication between neighboring elements for
constructing the block-tridiagonal DG Hamiltonian matrix on tens
of thousands of cores on modern heterogeneous HPC
supercomputers.

The secondary level is called intra-element parallelization on
each element. This level parallelization uses the row block MPI grid
partition for the global 2D MPI process grid. The generation of ALB
functions for solving the local Kohn–Sham equations on each ele-
ment in the inner SCF iterations can be efficiently parallelized sim-
ilar to the case of conventional standard plane-wave DFT software
packages, such as VASP [13] and QUANTUM ESPRESSO [14]. The
DGDFT software includes a self-contained module called PWDFT
[23] for performing conventional standard plane-wave based elec-
tronic structure calculations. It should be noticed that plane-wave
basis sets always require relatively large number of basis functions
for high-accuracy KS-DFT calculations. There are two types of par-
allelization, called the band and grid parallelization (Fig. 3b and c)
[15], in the inner SCF iterations of PWDFT for each row block MPI
process Pe in the global 2D MPI process grid. In particular, for the

tall-skinny wavefunction matrix UQk 2 RN
Qk
r �Jb on the extended ele-

ment Qk in PWDFT, the band parallelization is to use the column
cyclic partition especially for FFTs, while the grid parallelization
is to use row block partition especially for GEMMs. We use the
MPI_Alltoallv function to transfer two types of data partition
between the band and grid parallelization. However, large basis
sets are not conducive to take full advantage of HPC on modern
heterogeneous supercomputers due to the high all-to-all data com-
munication of the dense Hamiltonian matrix generated in large
uniform plane-wave basis set. Therefore, PWDFT can only deal
with small-scale systems containing hundreds of atoms and scale
to thousands of cores [23]. Because each element only contains less
than tens of atoms in DGDFT, in the intra-element parallelization,
we perform the small-scale KS-DFT calculations for solving the
local KS equations by using Pe <200 cores on each element with
ultrahigh parallel efficiency of 95% in the inner SCF iterations of
PWDFT. In the current framework of DGDFT, the maximum num-
ber can be used this level for PWDFT is Jb ¼ Nb=M, thus, 1
6 Pe 6 Nb=M. It should be noticed that this level of intra-element
parallelization in DGDFT only requires to scale to hundreds of cores
for such small-scale KS-DFT calculations.

For the global outer SCF iterations, diagonalizing the DG Hamil-
tonian matrix is the most expensive part of DGDFT for large-scale
materials simulations, three diagonalization methods (DIAG,
CheFSI and PEXSI) [17,19] can directly take advantage of such
two-level parallelization strategy of 2D MPI process grid in the
DGDFT method. From such two-level parallelization strategy, the
minimum number Nmin and maximum number Nmax of MPI pro-
cesses used in DGDFT are computed as Nmin ¼ M and
Nmax ¼ MJb ¼ Nb. By using this two-level parallelization strategy,
DGDFT is highly scalable on hundreds of thousands of cores on
modern heterogeneous X86 HPC supercomputers [17].
Fig. 4. The SW26010 processor architecture in the Sunway TaihuLight supercom-
puter [21].
2.2.2. DGDFT on Sunway TaihuLight supercomputer
The Sunway TaihuLight [21] is the new generation of Chinese

home-grown supercomputer, and it ranks the No. 3 on the
top500 list in 2019. It consists of 40,960 domestic-designed
SW26010 processors, which is based on a master–slave heteroge-
neous architecture. It should be noted that Sunway processor uses
a Reduced Instruction Set Computer (RISC) design, different from
the widely used X86 Complex Instruction Set Computer (CISC)
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architecture. The architecture of the SW26010 processor is shown
in Fig. 4. Each SW26010 processor chip contains 4 core groups
(CGs), and each CG acts as a master–slave many-core module. In
a single CG module, one management processing element (MPE)
works as the master core and 64 computing processing elements
(CPEs) arranged in an 8 � 8 grid serve as the slave cores.

We implement the DGDFT software package in the C/C++ pro-
gramming language and uses the message passing interface
(MPI) for parallel programming. For DGDFT, each MPI process runs
on a CG with MPE as a master processing core and can be effec-
tively multi-thread accelerated by 64 PCEs as slave processing
cores on the SW26010 processor, similar to the OpenMP and
GPU parallel programming.

In particular, the two-level parallelization strategy of DGDFT
acts as a process-level parallelism between different CGs and the
slave processing acceleration can be considered as a thread-level
parallelism by using the 64 slave processing cores on each CG on
the Sunway TaihuLight supercomputer. Therefore, the minimum
and maximum numbers of processing cores used in DGDFT for
the KS-DFT calculations respectively are 65M and 65Nb, where M
is the number of elements and Nb is the number of the ALB func-
tions used in the system. Compared to the DGDFT [17] imple-
mented in the Edison supercomputer at the USA NERSC platform,
each CG on the Sunway TaihuLight supercomputer can act as a
CPU processing core in the Edison supercomputer (includes 5,462
Cray XC30 nodes and each node has 24 cores partitioned among
two Intel Ivy Bridge processors). The Sunway TaihuLight supercom-
puter includes 10,649,600 processing cores, which are much larger
than that (131,088 processing cores) in the Edison supercomputer.

The time-consuming cost in DGDFT is spent in the matrix oper-
ations, such as the vector-vector, matrix–vector, and matrix–ma-
trix multiplications (DGEMM), matrix diagonalization (DSYEVD),
matrix Cholesky factorization (DPOTRF) and fast Fourier transform
(FFT). All these matrix operations can be realized through the Basic
Linear Algebra Subprograms (BLAS), Linear Algebra PACKage
(LAPACK) and Fastest Fourier Transform in the West (FFTW)
libraries. Fortunately, most of these subroutines in the BLAS and
LAPACK libraries have been reimplemented into the xMath library
and accelerated by the slave processing CPEs on each CG of
SW26010 processors through the thread-level parallelism on the
Sunway TaihuLight supercomputer.
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3. Results and discussion

In this section, we demonstrate the computational efficiency
and parallel scalability of the DGDFT method to accelerate large-
scale KS-DFT calculations on the Sunway TaihuLight supercom-
puter. We have implemented the DGDFT method as software pack-
age also called DGDFT [17], which has been written in the C/C++
programming language with the message passing interface (MPI)
for parallel programming. DGDFT supports the Hartwigsen-
Goedecker-Hutter (HGH) [28] norm-conserving pseudo-potential.
In this work, we use the exchange–correlation functional of local
density approximation of Goedecker-Teter-Hutter (LDA-PZ) [29]
to describe the electronic structures of metallic graphene systems.
It should be noticed that the computational accuracy of the DGDFT
method is comparable to standard plane-wave KS-DFT calcula-
tions, such as QUANTUM ESPRESSO [14], which has already been
validated in our previous works [16–20].

We use the DGDFT method to study the electronic structures of
three graphene systems, G180, G2880 and G11520, containing 180,
2880 and 11,520 carbon atoms, respectively. The G2880 and
G11520 systems are generated from extending the G180 system
in the x and y directions with 4 � 4 and 8 � 8 supercells, respec-
tively. We set the kinetic energy cutoff Ecut = 55 Ha for three metal-
lic graphene systems, which can reach high accuracy level [20] of
10�5 Ha/atom in terms of the error of total energy and 10�4 Ha/
Bohr in terms of the error of atomic forces, respectively.

Table 1 lists the computational parameters of graphene (G180,
G2880 and G11520) systems used in the DGDFT method, including
the number Nr of grid points, the numbers NA of carbon atoms, the
numbers Ne of electrons, the number Jb of the ALB functions used in
each element, the numbers M of elements, the numbers Nb of the
ALB functions, and the minimum Nmin ¼ M and maximum
Nmax ¼ MJb ¼ Nb numbers of CGs used on the Sunway TaihuLight
supercomputer. The total number of grid points Nr in real space
is determined from the kinetic energy cutoff Ecut defined as
Nrð Þi ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Ecut

p
Li=p, where Li is the length of supercells along the

i-th (x; y and z) coordinate direction.
To illustrate the computational efficiency and parallel scalabil-

ity of the DGDFT method, we demonstrate the computational time
of four time-consuming parts for 2D metallic graphene system
(G2880 and G11520) without or with the master–slave multi-
thread parallelism on the Sunway TaihuLight supercomputer,
including generating the ALB functions, constructing and diagonal-
izing the DG Hamiltonian and computing the electron density, as
shown in Figs. 5 and 6. There are some additional steps such as
computing total energy and atomic forces, which are all included
in the total wall clock time of outer SCF iterations in the DGDFT
calculations.
3.1. Master process parallelism

We first validate the parallel scalability of DGDFT when only
using the master process parallelism on the CGs of Sunway archi-
Table 1
Computational parameters of graphene (G180, G2880 and G11520) systems in
DGDFT, including the numbers Ne of electrons, the number Nr of grid points in real
space, the number Jb of the ALB functions used in each element, the numbers M of
elements, the numbers Nb of the ALB functions, and the minimum (Nmin ¼ M) and
maximum (Nmax ¼ MJb ¼ Nb) numbers of MPI processes (CGs) used on the Sunway
TaihuLight supercomputer.

Systems Ne Nr Jb Nmin Nmax

G180 720 633,600 200 16 3200
G2880 11,520 183,500,800 128 1024 131,072
G11520 46,080 552,075,264 100 2304 230,400
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tecture but without slave multi-thread acceleration for the G2880
system. In this case, each CG acts as an MPI process similar to a
core in the CPU processor of the widely used X86 architecture.
For the G2880 system, we set a large number (45.5) of ALB func-
tions per atom (Jb = 128, M = 1024 and Nb = 131,072) and 5 times
inner SCF iterations to generate the ALB functions for achieving
high accuracy. In this case, generating the ALB functions becomes
the most expensive part in the KS-DFT calculations in DGDFT.

The total time of the DGDFT calculations for the G2880 system
is 5024.35 and 257.45 s by using Nmin = 1024 and Nmax = 131,072
CGs, respectively. The parallel efficiency is only 15.24% (The
speedup is 19.51) when using 131,072 master CGs. In detail, when
using 1024 master CGs, the time for four expensive parts are
4296.46 s for generating the ALB functions, 227.19 and 201.33 s
for constructing and diagonalizing the DG Hamiltonian, and
201.33 s for computing the electron density, respectively. The time
of generating the ALB functions, constructing the DG Hamiltonian,
and computing the electron density is reduced to 33.79, 3.05 and
2.44 s, respectively, when using 131,072 master CGs. And corre-
sponding parallel efficiencies can achieve as high as 99.33%,
58.19%, and 64.46%, respectively.

The main part of reducing the total parallel efficiency is to diag-
onalize the DG Hamiltonian by using the CheFSI method in DGDFT.
It should be noticed that the time of diagonalizing the DG Hamilto-
nian is only reduced from 227.19 to 210.61 s when increasing the
number of master CGs from 1024 to 131,072. The major bottleneck
of the CheFSI method is to solve the projected subspace eigenvalue
problem, which can only use the column block MPI grid partition
(1024 MPI processes) in the global 2D MPI process grid. The time
for solving this small eigenvalue problem is almost unchanged
and dominated in the CheFSI method for the G2880 system. Other
parts in the CheFSI method only require the block-matrix multipli-
cations, which can ideally take advantage of the global 2D MPI pro-
cess grid. Therefore, the computation of these parts is highly
scalable parallelized by using the master process parallelism of
CGs and the time is negligible in this case for the G2880 system.
3.2. Master–slave multi-thread parallelism

The major advantage of Chinese home-grown SW26010 proces-
sors is based on a new Sunway master–slave heterogeneous archi-
tecture, which can be efficiently accelerated by the master–slave
multi-thread parallelism on the Sunway TaihuLight supercom-
puter. In this case, when using the master–slave multi-thread par-
allelism for the G2880 system, the total time can be further
reduced to 2863.05 and 69.17 s by using Nmin = 1024 and Nmax =
131,072 CGs, respectively, which is much faster than the case
(5024.35 and 257.45 s) of the master process parallelism. Further-
more, the total parallel efficiency increases to 32.33% (the speedup
is 41.39) when using 131,072 CGs with the master–slave multi-
thread parallelism.

In detail, when using 1024 CGs (66,560 processing cores), the
time for four expensive parts are 2434.22 s for generating the
ALB functions, 170.54 and 36.90 s for constructing and diagonaliz-
ing the DG Hamiltonian, and 200.89 s for computing the electron
density, respectively. In particular, three parts of generating the
ALB functions, constructing and diagonalizing the DG Hamiltonian
have been accelerated by factors of 1.76, 1.33 and 5.45 by using the
master–slave multi-thread parallelism.

But the part of computing the electron density has not been
accelerated by using such master–slave multi-thread parallelism,
that is because that most matrix operations of this part are real-
to-complex FFTs and MPI data commutations between CGs, which
can not benefit from the master–slave multi-thread parallelism on
the Sunway TaihuLight supercomputer.



Fig. 5. The wall clock time with respect to the number of CGs (each CG includes 65
processing cores) without or with the master–slave multi-thread parallelism on the
Sunway TaihuLight supercomputer used for 2D metallic graphene system G2880
containing 2,880 carbon atoms. Strong scaling of (a) total computational time per
outer SCF iteration, including the time for (b) generating the ALB functions, (c)
constructing the DG Hamiltonian, and (d) computing the electron density.

Fig. 6. The wall clock time with respect to the number of cores by using the
master–slave multi-thread parallelism on the Sunway TaihuLight supercomputer
used for 2D metallic graphene system G11520 containing 11,520 carbon atoms. (a)
Strong scaling and (b) parallel efficiency of total computational time per SCF
iteration, including the time for generating the ALB functions, constructing and
diagonalizing the DG Hamiltonian, and computing the electron density.
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3.3. Tens of thousands of atoms materials simulations

As we know that it is a major challenge to perform the KS-DFT
calculations for first-principles materials simulations on ultra-
large-scale systems containing tens of thousands of atoms, espe-
cially for metallic systems. Fig. 6 shows the wall clock time with
respect to the number of cores by using the master–slave multi-
thread parallelism on the Sunway TaihuLight supercomputer for
the G11520 system containing 11,520 carbon atoms. Because these
KS-DFT calculations are ultra-large-scale materials simulations, we
only set a small number (20.0) of ALB functions per atom (Jb = 100,
M = 2304 and Nb = 230,400) and once inner SCF iteration to gener-
ate the ALB functions for the G11520 system. In this case, diagonal-
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izing the DG Hamiltonian becomes the most expensive part in such
ultra-large-scale KS-DFT calculations the DGDFT method. Other
three parts become much cheaper and more scalable than that of
diagonalizing the DG Hamiltonian.

The total time of the DGDFT calculations for the G11520 system
is 509.90 and 208.2 s when respectively using 9216 and 73,728 CGs
(599,040 and 4,792,320 cores) with the master–slave multi-thread
parallelism. The parallel efficiency is 30.61% (The speedup is 2.45)
when using 73,728 CGs (4,792,320 cores). In detail, when using
599,040 cores, the time for four expensive parts is 37.51 s for gen-
erating the ALB functions, 40.80 and 221.75 s for constructing and
diagonalizing the DG Hamiltonian, and 3.63 s for computing the
electron density, respectively. These results are reduced to 5.65,
1.38, 94.16, and 0.56 s, respectively, when using 4,792,320 cores.
It should be noticed that three cheap parts, including generating
the ALB functions, constructing the DG Hamiltonian and comput-
ing the electron density, show high parallel efficiencies up to
82.99%, 79.90%, and 76.95%, respectively, when using 4,792,320
cores. But the parallel efficiency of the expensive part to diagonal-
ize the DG Hamiltonian by using the CheFSI method is only 29.43%
when using 4,792,320 cores.
4. Conclusion and outlook

In summary, we demonstrate that DGDFT can be used to push
the envelope to investigate the electronic structures of ultra-
large-scale metallic systems containing tens of thousands of atoms
by combing with the two-level parallelization strategy of DGDFT
and the master–slave multi-thread heterogeneous parallelism of
the Sunway TaihuLight supercomputer. We show that DGDFT can
achieve a high parallel efficiency up to 32.3% (speedup as high as
42,382.9) by using 8,519,680 processing cores (131,072 core
groups) on the Sunway TaihuLight supercomputer.

For diagonalizing the block-tridiagonal sparse DG Hamiltonian
in the DGDFT method, the PEXSI method is more efficient and scal-
able than the CheFSI method [17]. But the PEXSI method is difficult
to be implemented with the heterogeneous CPU and GPU multi-
thread parallelism. In the future work, we try to optimize the par-
allel implementation of the PEXSI method on the Sunway Taihu-
Light supercomputer.
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