
2.5 Million-Atom Ab Initio Electronic-Structure
Simulation of Complex Metallic Heterostructures

with DGDFT
Wei Hu‡†, Hong An‡§∗, Zhuoqiang Guo¶†, Qingcai Jiang‡†, Xinming Qin‡†, Junshi Chen‡§, Weile Jia¶∗,
Chao Yang‖, Zhaolong Luo‡, Jielan Li‡, Wentiao Wu‡, Guangming Tan¶, Dongning Jia§, Qinglin Lu∗∗,

Fangfang Liu∗∗, Min Tian††, Fang Li‡‡, Yeqi Huang‡, Liyi Wang‡, Sha Liu‡ and Jinlong Yang‡∗
‡ University of Science and Technology of China, Hefei, Anhui, China

§ Pilot National Laboratory for Marine Science and Technology (Qingdao), China
¶ Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

‖ School of Mathematical Sciences, Peking University, Beijing, China
∗∗ Institute of Software, Chinese Academy of Sciences, Beijing, China

†† Qilu University of Technology, Shandong Computer Science Center, Jinan, Shangdong, China
‡‡ National Research Center of Parallel Computer Engineering and Technology, Beijing, China

Abstract—Over the past three decades, ab initio electronic
structure calculations of large, complex and metallic systems are
limited to tens of thousands of atoms in computational accu-
racy and efficiency on leadership supercomputers. We present
a massively parallel discontinuous Galerkin density functional
theory (DGDFT) implementation, which adopts adaptive local
basis functions to discretize the Kohn-Sham equation, resulting
in a block-sparse Hamiltonian matrix. A highly efficient pole
expansion and selected inversion (PEXSI) sparse direct solver is
implemented in DGDFT to achieveO(N1.5) scaling for quasi two-
dimensional systems. DGDFT allows us to compute the electronic
structures of complex metallic heterostructures with 2.5 million
atoms (17.2 million electrons) using 35.9 million cores on the
new Sunway supercomputer. The peak performance of PEXSI
can achieve 64 PFLOPS (∼5% of theoretical peak), which is un-
precedented for sparse direct solvers. This accomplishment paves
the way for quantum mechanical simulations into mesoscopic
scale for designing next-generation electronic devices.

Index Terms—First-principles density functional theory, ab
initio electronic structures, discontinuous Galerkin method, pole
expansion and selected inversion algorithm, new Sunway su-
percomputer, complex metallic mesoscale heterostructures, next-
generation devices

I. JUSTIFICATION FOR PRIZE

Record 2.5-million-atom (100x improvement w.r.t. current
state-of-the-art) ab initio electronic structure simulations for
large-scale complex metallic heterostructures (200 nm, meso-
scopic scale). PEXSI can reach an unprecedented 64 PFLOPS
(∼5% of theoretical peak) for sparse direct solvers. Corre-
sponding time-to-solution can be three orders of magnitude
faster than the current state-of-the-art.

†These authors contributed equally to this work.
*Corresponding Author: Hong An (han@ustc.edu.cn), Weile Jia (ji-

aweile@ict.ac.cn), Jinlong Yang (jlyang@ustc.edu.cn).

II. PERFORMANCE ATTRIBUTES

Performance attribute Our submission

Category of achievement Time-to-solution, scalability
Type of method used Discontinuous Galerkin DFT
Results reported on basis of Whole application including I/O
Precision reported Double precision
System scale Measured on whole system
Measurements Timers, FLOP count

III. OVERVIEW OF THE PROBLEM

First-principles materials simulation is the most accurate
and effective quantum-mechanical methodology to explore
the ab initio electronic structures for designing new high-
efficiency energy materials and electronic devices. For new
quantum multifunctional materials and next-generation elec-
tronics [1], [2], nanoscopic (< 10 nm) and mesoscopic (>
100 nm) heterostructures [3] with complex atomic structures
and electronic properties have been proposed as strong candi-
dates for solar cells, battery electrodes, field-effect transistors
(FETs) [2], PN junctions and diodes, due to their superior
electronic properties (e.g., bandgap opening, band alignment
and charge transfer) as shown in Fig. 1(a). For example, as
one of the most important two-dimensional (2D) materials,
graphene and its interfaces with metals have attracted much
attention in graphene FETs [4] because of its high mobility.
Magic-angle twisted bilayer graphene (MATBG) [5] with the
moiré superlattice can trap electrons on the flat graphene
surface, which provides a good platform to investigate high-
temperature superconductivity and topological insulator for
next-generation FET channel materials [4]. However, even
for the first maximum magic angle (1.1◦) in MATBG, the
smallest unitcell (10 nm) contains more than 10K atoms.
Thus, multilayer MATBG systems with smaller magic angles
in supercells readily reach up to 1M atoms (> 100 nm) in real

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

Fig. 1. (a) Four types of heterostructures for graphene FETs (Au/Cu, Cu/graphene/Cu (Cu/G/Cu), LaAlO3/SrTiO3 (LAO/STO) and bilayer graphene (BG)).
(b) Three types of basis sets for discretizing the KS equations, including atomic orbitals, plane waves and adaptive local basis functions, with sparse, dense
and block-sparse Hamiltonian metrics, respectively.

applications [2]. Metal alloys, such as lithium-sodium (Li/Na)
and gold-copper (Au/Cu), act as electrodes in batteries [6] and
FETs [1], especially light metal Li/Na alloy processes strong
quantum effect on the battery performance. As dielectric
substrates in FETs, a 2D superconductor electron gas [7] has
been reported at the heterointerface between the two insulating
oxides LaAlO3 (LAO) and SrTiO3 (STO) through spontaneous
and piezoelectric polarization. Therefore, the ability to simu-
late ab initio electronic structures of these heterostructures is
the key to the design of entire next-generation electronics at
mesoscopic scale (> 100 nm), such as FETs [1], [4], and
is the heart of atomistic technology computer-aided design
(TCAD) [2].

With an excellent balance between numerical accuracy
and computational efficiency, the Kohn-Sham (KS) density
functional theory (DFT) [8], [9] has become the most pop-
ular quantum-mechanical methodology to describe ab initio
electronic structures of molecular and solid systems [10]
in condensed matter physics, computational chemistry and
materials science. However, most of the conventional DFT
calculations have been performed for nanoscopic heterostruc-
tures (< 1K atoms), which are far from the size of mesoscopic
heterostructures (> 100 nm and 1M atoms) in the entire next-
generation electronics [2]. For example, low-angle (< 10◦)
surface dislocations [11] and grain boundaries in mesoscopic
heterostructures always contain more than 10K atoms [2], such
as Au/Cu, Li/Na, Cu/G/Cu, LAO/STO, multilayer graphene
and MATBG (Fig. 1(a)).

A. Computational Challenges

A conventional DFT calculation for an N -atom system
performs O(N3) floating point operations and requires an
O(N2) memory footprint. In order to solve the KS equations,
we need to select a basis set to represent the solution. For
molecular systems, localized basis sets such as Gaussian-type
orbitals [12] and numerical atomic orbitals [13] are preferred

for low-scaling eigensolvers, especially linear-scaling meth-
ods [13]. For periodic solid systems, especially for metal
oxides and perovskites containing heavy metal elements, such
as LAO/STO, plane-waves [14]–[16] are preferred for cubic-
scaling eigensolvers. However, the number of plane waves
is typically NPW > 108 even for moderate-scale systems (<
5K atoms) [14], [16], which explicitly requires 1024 floating
point operations and 1016 bytes memory usage. Such high
computational cost and large memory usage hinder in large
systems (10K atoms). Therefore, it is challenging to develop
accurate, efficient and low-scaling methods for large-scale
plane-wave DFT calculations especially for complex metallic
systems.

B. Conventional Solutions

There are mainly two solutions to accelerate large-scale
DFT calculations. The most common solution is to develop
efficient low-scaling eigensolvers for sparse Hamiltonian ma-
trix within localized basis sets for reducing the computa-
tional cost and memory usage. The most notable examples
are linear-scaling methods [13], such as divide-and-conquer
(DAC) methods [17] and fragment molecular orbital (FMO)
methods [18]. For large-scale complex and metallic systems,
several efficient cubic-scaling eigensolvers, such as partial
Rayleigh-Ritz [19] method and Chebyshev polynomial filtered
subspace iteration (CheFSI) [20] method, have been proposed.
Another solution is high performance computing (HPC) for
accelerating large-scale DFT calculations on modern super-
computers. Based on these low-scaling methods implemented
with localized basis sets, several highly efficient DFT soft-
ware packages have been developed, such as CP2K [21],
CONQUEST [22], OPENMX [23], ONETEP [24], and FHI-
aims [25], and SIESTA [26], due to the local data commu-
nication of sparse Hamiltonian matrix (Fig. 1 (b)). However,
most of linear-scaling DFT methods are limited to total energy
calculations and strongly rely on the nearsightedness principle

in molecules, semiconductors and insulators (difficult for com-
plex metallic systems). Furthermore, the numerical accuracy
and computational efficiency of linear-scaling methods also
depend on the parameters of localized basis sets, and are
difficult to be improved systematically compared to complete
basis sets (plane waves). But cubic-scaling plane-wave DFT
codes, such as VASP [27] and QUANTUM ESPRESSO [15],
require a large number of basis set for high accuracy and
are difficult to achieve large-scale DFT calculations (> 10K
atoms) due to large all-to-all data communications of dense
Hamiltonian matrix (Fig. 1 (b)). To date, standard plane-
wave calculations are still limited to thousands of atoms in
Qbox [14] and PWDFT [16].

IV. CURRENT STATE OF THE ART

The rapid development of modern supercomputers enables
the HPC as a powerful tool to accelerate large-scale DFT
calculations. Several massively parallel DFT softwares have
been developed, such as Qbox [14], LS3DF [28], RSDFT [29],
CONQUEST [22], FHI-aims [25], and DFT-FE [11]. For ex-
ample, large-scale linear-scaling DFT calculations (1M atoms)
have been performed in CONQUEST [22] on the Cray su-
percomputer. But Qbox [14] as the only plane-wave code,
wins the Gordon Bell prize of 2006, which can scale up
to 128K CPU cores on the BlueGene/L supercomputer for
small-scale systems (1K atoms). In particular, as one of
Gordon Bell finalists in 2019, a finite-element method has
been proposed in DFT-FE [11] to enable fast, accurate and
massively parallel cubic-scaling (CheFSI) DFT calculations on
large-scale metallic systems (11K Mg atoms).

A. DGDFT Methodology

The discontinuous Galerkin (DG) method [32] is a powerful
tool to discretize partial differential equations, such as classical
mechanics in the Hamilton-Jacobi equation [33] and fluid me-
chanics in the Navier-Stokes equation [34]. In 2012, Lin et al.
first proposed [35] to adopt the DG method for KS equations
and then developed discontinuous Galerkin density functional
theory (DGDFT) [20], [30], [31], [36], which aims to combine
the advantages of both atomic orbitals and plane waves (Fig. 1
(b)). DGDFT is unique in two aspects: an adaptive local basis
(ALB) set [35] and a sparse direct solver (pole expansion and
selected inversion (PEXSI) [37] method). DGDFT uses the
ALB functions [30] to discretize the KS equations. As a new
type of orthogonal, localized, and complete basis sets, the ALB
functions are efficient and systematically improvable not only
for total energy calculations, but also for atomic forces and vi-
brational frequencies [36], which can be used for a wide range
of applications such as geometry optimization and molecular
dynamics simulation. The ALB function is strictly localized in
a subdomain in the real space, and it has two benefits: (1) In
the basis construction step, we can deal with each subdomain
element separately(as shown in Fig. 2(a)). (2) The correspond-
ing DG Hamiltonian matrix keeps a block-sparse structure
during the self-consistent field (SCF) iteration (Fig. 2(c)). The
former helps us in introducing a divide-and-conquer method in

generating ALB functions for the Hamiltonian matrix, while
the latter is critical in utilizing the PEXSI solver to reduce the
computational complexity. Differing from the linear scaling
methods relying on the nearsightedness principle, DGDFT is
universal for both semiconducting and metallic systems. With
the sparse direct solver PEXSI, we realize low-scaling cost
O(N1.5) for quasi 2D complex metallic systems with plane-
wave precision in DGDFT. Therefore, DGDFT is able to take
full advantage of the massive parallelism available on modern
heterogeneous supercomputers for high-precision plane-wave
DFT calculations. In particular, DGDFT has been demon-
strated scaling to 128,000 CPU cores on Edison [30] and
8,519,680 processing cores (131,072 core groups) on Sunway
TaihuLight [31] for performing large-scale DFT calculations
on metallic systems (> 10K atoms). Furthermore, DGDFT
and PEXSI have been used to design multifunctional materials
(Solar cells [38] and quantum dots [39]) and explain the new
phenomenon in experiments (Photoactivity [40] and hydrogen
evolution [41]).

The flowchart of the DGDFT methodology is given in
Fig. 2(e). There are four time-consuming parts in DGDFT:

(1) Generating ALB functions: We first decompose the
global domain into a series of subdomains (called elements
in Fig. 2(a)). Then we can deal with each subdomain without
communication and gather all basis sets to solve the global KS
equations [35]. We partition a 2D graphene system with 180
carbon atoms (G180) into 16 equal-sized elements in a 2D
4 × 4 mesh. We define an extended element Q6 composed
of a central element E6 and 8 neighboring elements. We
solve small local KS equations HQkφQk

k,j = λQk

k,jφ
Qk

k,j (HQk

and φQk

k,j are the local Hamiltonian and KS orbitals on the
extended element Qk). Then we restrict and truncate these
eigenfunctions into the central element E6 and obtain a new set
of ALB functions {φk,j}Jbj=1 (Jb is the number of ALB func-
tions in each element). The ALB function plotted in Fig. 2(a)
is strictly localized inside E4 and is therefore discontinuous
across the boundary of elements. But the global electron
density looks continuous as shown in Fig. 2(b). Therefore, the
ALB functions combine the advantages of both atomic orbitals
(localization and truncation) and plane waves (orthogonality
and completeness) [30] for global KS equations, resulting in
a sparse-block DG Hamiltonian (Fig. 2(c)). Furthermore, the
ALB functions are adaptively generated on-the-fly during each
SCF. Such features make the DG Hamiltonian keep unchanged
in a sparse correlation-tridiagonal structure during the SCF
iterations even for complex metallic systems.

(2) Constructing DG Hamiltonian: For global KS equa-
tions, the KS orbitals ψi(r) are expanded over ALB func-
tions ψi(r) =

∑M
k=1

∑Jb
j=1 Ci;k,jφk,j(r). Within the ALB

functions, solving the global KS equations becomes a linear
eigenvalue problem∑

k,j

HDG
k′,j′;k,jCi;k,j = λiCi;k′,j′ , (1)

where HDG is a block-tridiagonal sparse DG Hamiltonian
matrix. The nonzero matrix blocks correspond to interactions

TABLE I
PERFORMANCE COMPARISON OF MASSIVELY PARALLEL DFT SOFTWARE PACKAGES ON MODERN HETEROGENEOUS SUPERCOMPUTERS. THE DFT

METHODS INCLUDE CUBIC-SCALING PLANE-WAVE (PW) AND LOCALIZED REAL-SPACE (RS) BASIS SETS, NUMERICAL ATOMIC ORBITALS (NAOS), AND
LINEAR-SCALING (LS) SOLVERS. LS3DF, RSDFT, CONQUEST AND FHI-AIMS EXPLOIT LS EIGENSOLVERS. DGDFT AND DFT-FE CAN USE CHEFSI

EIGENSOLVER. QBOX AND PWDFT ADOPT CUBIC-SCALING CONJUGATE GRADIENT EIGENSOLVERS (DAVIDSON AND PPCG).

Code Year Basis Eigensolver System #atoms Machine Architecture Scale Peak (FLOPS)
LS3DF [28] 2008 PW LS ZnTeO 16K BlueGene/R PowerPC 131K cores 108T
RSDFT [29] 2011 RS LS Si 107K K computer SPARC64 442K cores 3.1P

CONQUEST [22] 2020 NAOs LS Si 1M K computer SPARC64 200K cores \
FHI-aims [25] 2021 NAOs LS Polyethylene (H[C2H4]nH) 500k New Sunway sw26010 pro 40M cores 468.5P

Qbox [14] 2006 PW Davidson Mo 1K BlueGene/L PowerPC 128K cores 207T
DGDFT [30] 2015 DG-PW PEXSI Phosphorene 14K Edison Intel Xeon 128K cores \
PWDFT [16] 2017 PW PPCG Si, H2O, AlSi 5K Cori Intel Xeon 8K cores \
DGDFT [20] 2018 DG-PW CheFSI Lithium battery 28K Cori Intel Xeon 39K cores \
DFT-FE [11] 2019 RS-PW CheFSI Mg 11K Summit V100 23K GPUs 46P
DGDFT [31] 2021 DG-PW CheFSI Graphene 13K Sunway TaihuLight sw26010 8.5M cores \

DGDFT (This work) 2022 DG-PW PEXSI MATBG, Li/Na, Cu/G/Cu, LAO/STO 2.5M New Sunway sw26010 pro 40M cores 64.0P

(a)

(b) (c)

π
β

Im

−∆E ∆E Re

(d)

ρin ⇒ HDG(ρin)⇒ HQk(ρin)

. . .HQ1ϕ Q1
1, j = λ Q1

1, j ϕ Q1
1, j HQk ϕ Qk

k, j = λ Qk
k, j ϕ Qk

k, j

(1)

Construct DG Hamilatonian HDG

(2)

DG Eigensolver?

DIAG CheFSI PEXSI

(3)

Eigen Pairs Density Matrix

Compute electron density ρout

(4)

Outer SCF converged ?

Total energy and atomic forces

Stop

(e)

NO

DG method

Conventional
method

E1 P1,1 Pj,1 Pe,1· · · · · ·

Column
Processor
Group#1

E2 P1,2 Pj,2 Pe,2· · · · · ·

Column
Processor
Group#2

E9 P1,9 Pj,9 Pe,9· · · · · ·

Column
Processor
Group#9

E15 P1,15 Pj,15 Pe,15· · · · · ·

Column
Processor
Group#15

E16 P1,16 Pj,16 Pe,16· · · · · ·

Column
Processor
Group#16

P2
P

co
m

m
P2

P
co

m
m

AlltoAll communication

···
···

(f)

Pe,1 Pe,2 · · ·

P1,M

P2,M

···

Pe,M

e:
N

um
be

r
of

co
re

sf
or

ea
ch

el
em

en
t

M: Number of elements
(g)

P1,1

P2,1

···

P1,2

P2,2

···

· · ·

· · ·

· · ·

#PEXSIProcRow * #PEXSIProcCol

#P
ol

e

P1 P2 · · · Pe P1 P2 · · · Pe

N
g
∼

10
6

Jk ∼ 102

Column cyclic partition for FFT

(h)

P1

P2

···

Pe

Row block partition for GEMM

(i)

MPI_Alltoallv

#PEXSIProcCol

#P
E

X
SI

Pr
oc

R
ow

(j)

(k)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

Fig. 2. The main steps in DGDFT. (a) A 2D graphene system (G180) partitioned into 16 (4 × 4) elements. (b) The electron density. (c) The block-sparse
DG Hamiltonian matrix (G180). (d) Placement of poles used in PEXSI. (e) Flowchart of DGDFT. (f) Two-level parallelization in DGDFT, including (g) 2D
MPI grid, (h) 1D band parallelization with column cyclic partition (FFT) and (i) 1D grid parallelization with row block partition (GEMM). (j) The processor
grid in PEXSI. (k) Data communication heat map in DGDFT and PEXSI, the same color denotes a collective communication group.

between neighboring elements are shown in Fig. 2(c).
(3) Diagonalizing DG Hamiltonian: The conventional

method is to directly diagonalize the DG Hamiltonian by using
the PDSYEVD subroutine in ScaLAPACK (referred to as
DIAG). We present two efficient methods to solve this eigen-
value problem, including the PEXSI [37] and CheFSI [20]
algorithms. The CheFSI algorithm is a cubic-scaling diago-
nalization method (also used in DFT-FE [11]) and has been
demonstrated in DGDFT only scaling to 131,072 core groups
on the Sunway TaihuLight supercomputer [31].

In DGDFT, the sparse direct solver PEXSI [37] is designed
to exploit the sparsity of the Hamiltonian once the DG
Hamiltonian is constructed. PEXSI expands the density matrix
with a linear combination of Green’s functions

P ≈
Q∑
l=1

Im
[
ωl(H

DG − zlI)−1
]
, (2)

where the integration weights ωl and shifts zl are chosen
carefully so that the number of expansion terms Q is propor-
tional to log(β∆E), where β is the inverse temperature and
∆E is the spectrum width of HDG (Fig. 2(d)). In practice,
40 to 120 poles are already enough to produce accurate

results. The evaluation of one pole can be parallelized up to
10, 000 MPI tasks, and different poles can be embarrassingly
parallelized. Since only the nonzero blocks of (HDG− zlI)−1

are required to evaluate the density matrix, an efficient selected
inversion algorithm can be used in solving the problem. In
PEXSI, we first perform parallel sparse LU factorization of
the shifted DG Hamiltonians ((H − zlI)) using state-of-the-
art LU factorization package SuperLU_DIST [42], and then
perform selected inversion on the lower triangular matrix L
with PSelInv [43]. FHI-aims [25] and CP2K [21] also use
the PEXSI eigensolver, but their implementations of PEXSI
is currently not highly scalable (< 10K CPU cores) within
atomic basis sets.

(4) Computing electron density: After solving the eigen-
value problem, the electron density, total energy [35] and
atomic forces [36], can be individually computed on each
element.

B. Two-Level Parallelization Strategy

We remark that a two-level parallelization strategy is utilized
in DGDFT as given in Fig. 2(f). The MPI tasks are arranged
in 2D grids, and both intra-element and Hamiltonian matrix

(inter-element) are distributed and parallelized in the same
fashion (Fig. 2(g)). Note that the communication patterns of
both intra- and inter-element parallelization are fixed due to the
fact that DG Hamiltonian matrix structure remains unchanged
throughout the SCF iterations. We combine the techniques
of OS.write, OS.read, container and serialization in C++, to
efficiently simplify the communication process (Fig. 2(g) and
(k)) and improve the communication efficiency in DGDFT.

The first level is the intra-element column parallelization for
evaluating each extended element in inner SCF iterations. As
shown in Fig. 2(g), each column of MPI processes holds an
individual extended element, and constructs the corresponding
fragment of the DG Hamiltonian matrix over ALB functions.
For local KS equations, we implement a plane-wave module
named PWDFT [16] by using less than Pe < 200 cores
on each extended element. The data layout of local KS
orbitals ΦQk ∈ RN

Qk
r ×Jb is rearranged between column cyclic

partition (Fig. 2(h)) and row block partition (Fig. 2(i)) for
efficiently performing FFT and GEMM, respectively, with a
local MPI_Alltoallv for data format conversion.

The second level is the inter-element row parallelization
for outer SCF iterations, where DG Hamiltonian matrix HDG

is diagonalized and most computationally intensive. Three
methods are implemented in DGDFT: Direct diagonalization
(DIAG), CheFSI and PEXSI [20], [30]. From such a two-
level parallelization strategy, the minimum number Nmin and
maximum number Nmax of MPI processes used in DGDFT
are computed as Nmin = M and Nmax = MJb = Nb. By
using this two-level parallelization strategy, DGDFT is highly
scalable on 100K cores on heterogeneous supercomputers [30],
[31].

In PEXSI, each pole requires a 2D grid of size (#PEXSIPro-
cRow) × (#PEXSIProcCol) as shown in Fig. 2(j). This paral-
lelization scheme restricts each pole to be evaluated within
M MPI tasks, and at most Pe poles can be processed in
parallel, where Pe is the number of MPIs in evaluating a
single element (Fig. 2(g)). This parallelization scheme will
be improved in Sec. V. In PEXSI, multiple (Nµ) Fermi
operators are evaluated in parallel to dynamically keep a
rigorous upper and lower bound of the true chemical potential,
so that the chemical potential reaches convergence along with
the SCF iteration [44]. Thus the total number of poles reaches
Nµ×Npole. We remark that the baseline DGDFT and PEXSI
(SuperLU_DIST7.2 and PSelInv) are linked with many-core
accelerated libraries.

V. INNOVATIONS

Our main contribution is a massively parallel DGDFT,
which can scale up to 102,400 computing nodes on new
Sunway to study complex metallic heterostructures (2.5M
atoms), reaching mesoscale for the first time. This is mainly
achieved by adapting PEXSI to take advantage of the block-
sparse Hamiltonian matrix. By using PEXSI, we overcome
the cubic scaling of conventional eigensolvers, and reduce
the computational complexity to O(N1.5) and O(N2) for
two- and three-dimensional systems, respectively. We optimize

the computationally intensive parts with both algorithmic and
system innovations, and our optimized sparse direct solver
PEXSI can reach 64.0 PFLOPS (∼5.0% of the peak) on
almost entire Sunway supercomputer. The corresponding time-
to-solution takes 931.0 seconds per SCF for a system with
2.5-million atoms, which is estimated to be more than 1000
times faster than the current state-of-the-art.

A. Algorithmic Innovation

In this section, we mainly focus on the optimization of
the sparse direct solver PEXSI, which is composed of two
parts: LU factorization (SuperLU_DIST) and parallel selected
inversion (PSelInv) as discussed in Sec. IV. We remark
that optimizations of the sparse matrix operations, such as
SPMV, LU factorization, are notoriously difficult on modern
supercomputers due to their low arithmetic intensity relative to
the amount of data movement and indirect addressing. These
features are often in conflict with the computation/bandwidth
intensive nature of many-core architecture. For example,
the current state-of-the-art sparse-matrix benchmark HPCG
records can only reach 16 PFLOPS, 2.9 PFLOPS and 5.9
PFLOPS on Fugaku, Summit and new Sunway supercomput-
ers, respectively. These correspond to of 3.6%, 1.5% and 0.5%
of the peak performance, respectively [45], [46]. To harness
the computing power provided by many-core architecture, the
following algorithmic innovations in terms of data locality,
granularity and parallelization scheme are adopted:

• We introduce a specific blocked data scheme to take
advantage of the structured sparse pattern of DG Hamil-
tonian matrix. This greatly boosts the performance of the
PEXSI solver on the new sw26010 pro chip.

• We carefully adjust the granularity of supernodal repre-
sentation of PEXSI solver to adapt to both the sparse
pattern of DG Hamiltonian and hardware characteristics
of computation, bandwidth and network of the new
Sunway architecture.

• We propose a new parallelization scheme to decouple the
intra-element and inter-element parallelization to improve
the numerical efficiency of the DGDFT code.

1) Blocked LU factors for Hermitian matrix: In this sub-
section, we focus on the optimization of SuperLU_DIST, and
similar optimization techniques can be applied to selected
inversion PSelInv. The key steps of LU factorization for a
generalized sparse matrix H stored with supernodal repre-
sentation and distributed in a two-dimensional block cyclic
scheme are illustrated in Fig. 3(a). Note that we skip the look-
ahead of L and U factors for simplicity reasons. As shown
in Fig. 3(a), first the L panel is factorized (LFactor), then L
panel is broadcast to the right. Next the U panel is factorized
by TRSV (UPFactor), followed by the downward broadcast
of U panel. The last step is the computationally intensive
Schur complement update (SchurUpdate) that is carried out
via matrix-matrix multiplication. Note that maintaining data
locality is a fundamental challenge in implementing sparse
matrix linear algebra due to the unstructured computation and
indirect memory access, especially on many-core architectures.

Fig. 3. The blocked LU factors and corresponding optimization steps in optimized SuperLU_DIST. (a) Generalized sparse matrix(upper) and Hamiltonian
matrix generated in DGDFT (below). (b) previous (upper) and blocked (below) data format for U factor. (c) Previous (upper) and blocked (below) data format
for L factor. (d) U panel factorization, upper: baseline, below: optimized. (e) SchurUpdate, upper: baseline, below: optimized. (f) SchurUpdate Scatter, left:
baseline, right: optimized.

One key observation is that the Hamiltonian matrix in
DGDFT is Hermitian and nonzero matrix elements are in
structured dense blocks, as shown in Fig. 3(a) (below). There-
fore, we introduce a blocked format for LU factors to enhance
the data locality in both computation and memory access. Our
idea improves the data parallelism by storing both L and U
factors in blocks rather than vectors, as shown in Fig. 3(b)
and (c). In the new data format, the L factors (Fig. 3(c))
are reorganized from random order to a continuous storage,
which will benefit the scatter of SchurUpdate as will be
discussed below. Fig. 3(b) shows the comparison between
previous vector and the new block U data formats for the
U factors. Next we show how to improve the performance of
LU factorization by taking advantage of the new block data
format.

A. SchurUpdate gather. First, we optimize the gather
of L and U factors in SchurUpdate. The three steps of the
SchurUpdate for a generalized sparse matrix H are shown in
Fig. 3(e) (upper): (1) The nonzero blocks of both L:,k and Uk,:
are gathered to form extra dense matrix L:,k and Ũk,:. Note
that in the generalized implementation, extra zeros are filled in
to generate a dense matrix Ũk,:, as illustrated in Fig. 3(c). (2)
GEMM subroutine is invoked to perform dense matrix-matrix
multiplication on L:,k and Uk,: to get V . (3) Schur complement
is updated by scattering back matrix V . Note that in the
optimized code, step 2 is accelerated by calling our optimized
SWBLAS library specially customized for small matrix size
in DGDFT (Sec. V-B1). Then the gathered operations of both
L and U can be avoided by keeping the corresponding address
and size of L:,k and Uk,: factors in our new block data
format and the zero fill-in step can be eliminated, as shown
in Fig. 3(e)(below).

B. SchurUpdate scatter The indirect addressing of matrix
V in the SchurUpdate scatter is optimized to direct memory

access in the new block data format. As shown in Fig. 3(f), the
matrix V keeps the same order of the L factors. Previously,
the rows of the L factor are arranged in a random order,
indirect addressing is required to map between V and the
corresponding position in matrix A(Fig. 3(f)). Our optimized
SuperLU_DIST, however, can skip indirect addressing due to
the block format of the V matrix. A detailed pseudocode is
shown in Fig. 3(f) (below).

C. UPFactor. With U factors stored in blocks, we can
improve the efficiency of U panel factorization by replacing
TRSV with TRSM, as shown in Fig. 3(d). This significantly
improves the performance of the U panel factorization by a
factor of 100 on the new Sunway platform due to data reuse
and more computationally intensive of TRSM subroutine.
Consequently, an overall speedup of about 3 times can be
achieved (see Sec. VII) compared to the baseline, and we
remark that this is mainly contributed by the novel block data
format of U factors.

D. SNodeFactor. The factorization of the diagonal su-
pernode is implemented in a sequential way in the baseline
SuperLU_DIST, and it is accelerated with our optimized ker-
nel, which incorporates optimization techniques such as fused
panel factorization with data residing in the local data memory
(LDM), recursive blocked factorization and balanced data
distribution. Our optimized supernode factorization further
reduces the computation time, and leads to a 7% performance
boost.

Our optimized SuperLU_DIST can be ∼ 7 times faster
than the baseline. This is achieved by adapting the new block
data format to improve the data locality in both memory
access and computation. We find that both computation time
and communication time are reduced by 83% and 90%,
respectively (Sec. VII). We remark that the communication
time reduction is due to the reduction of the MPI wait time

caused by data dependence, and our optimized SuperLU_DIST
does not change the data dependence or communication graph
compared to the baseline. The optimizations above can also
be applied to the selected inversion PSelInv. For example,
the indirect addressing of the Schur complement in PSelInv
can also be improved by applying blocked memory access.
We remark that our optimization techniques above can also
be applied to all sparse Hermitian matrices and benefit other
scientific computing fields with sufficiently regular sparsity
patterns.

2) Supernode granularity: The performance of the PEXSI
solver is highly related to the supernodal representation. The
choice of the supernode size not only depends on the sparsity
pattern of the matrix, but also takes into account of the
hardware characteristics such as the computational power,
memory bandwidth and network latency/bandwidth, etc. Thus
the default supernode size represents a trade-off between
hardware limitations and sparsity patterns of the corresponding
matrix. For example, the supernode size changes from 128 in
SuperLU_DIST 6.1 to 256 in SuperLU_DIST 7.2 to embrace
the evolution of many-core architecture. Since the Hamiltonian
matrix generated from ALB functions has special block-
structure patterns and the computation/bandwidth/network on
the new Sunway supercomputer are unique, it is important to
re-evaluate the best supernode size to exploit the performance
provided by the new Sunway platform.

We perform a study of the performance of the PEXSI solver
with a typical Hamiltonian matrix generated from 103, 680-
atom graphene system. The dimensions of the Hamiltonian
matrix is 552, 960, and number of nonzeros is 919, 756, 800
(0.3% sparse), respectively. The corresponding performance
of the PEXSI solver w.r.t. the supernode size is shown in
Table II. We find that the best performance is achieved when
the supernode size is 320, which is higher than default of
SuperLU_DIST. 7.2 (256). This is due to the fact the sw26010
pro has a higher FLOPS/Byte ratio compared to other many-
core architectures such as NVIDIA GPU. In the tests shown
at Sec. VII, we set the supernode size to 320 to achieve the
best performance on the new Sunway platform.

TABLE II
PERFORMANCE (TFLOPS) OF PEXSI SOLVER W.R.T. THE SUPERNODE

SIZE ON 24 COMPUTING NODES FOR HAMILTONIAN IN GRAPHENE
(103,680 ATOMS).

Supernode size 64 128 256 320 384 448 512
G103680 5.3 10.4 12.8 13.0 12.1 12.7 12.0

3) Decouple intra- and inter-element parallelization :
Previously, both generating ALBs on extended elements and
using PEXSI to compute the electron density share the same
two-dimensional parallelization scheme, as shown in Fig. 4(a).
M extended elements are parallelized among the columns
of MPI tasks, and sparse Hamiltonian matrix HDG − zlI is
constructed and embarrassingly parallelized by rows. How-
ever, this parallelization scheme is not optimal for achieving
high efficiency in massively parallel computing. As shown in

Fig. 4(a), when using 480 MPI tasks to evaluate a system of
120 elements Ei, a 4×120 MPI grid is formed. Although the
extended elements are efficiently parallelized, the Npole×Nµ
poles can only be parallelized in groups of 4. When Nµ = 2
and Npole = 120, each row MPI tasks has to sequentially
process 60 poles.

A new parallelization scheme is developed to efficiently
exploit the computing power in new Sunway. The data dis-
tribution of extended elements and PEXSI are decoupled
to resolve the parallelization dilemma (Fig. 4(b)). The MPI
tasks are first organized into M groups to generate ALBs
on M extended elements. Then the Hamiltonian matrix H
is constructed and re-distributed into Nµ × Npole groups to
exploit the parallelism of poles. For example, the 120×4 grid
will be reorganized into 240 × 2 grid to parallelize the 240
poles (Nmu = 2 and Npole = 120). In Sec. VII, the Nµ×Npole
groups are always parallelized first to fully exploit the power
of Sunway.

B. System Innovation

1) Customized libraries: The xMath-BLAS library is cus-
tomized towards the small-size block matrix in DGDFT. The
GEMM function is modified in the following aspects: (1)
customized blocking and data-thread mapping, (2) specifically
designed software pipeline for matrices of different sizes and
shapes, and (3) fine-tuned assembly kernels with instructions
carefully arranged to maximize instruction level parallelism.
Compared to the previously more generalized SWBLAS, our
optimized version is 1.2 times faster on a non-transposed
DGEMM for a tall-and-skinny matrix-matrix multiplication
with M = 7388, N = 120, and K = 120. The xMath-LAPACK
library is also customized for the non-blocked factorization
with fully fused kernels. By keeping the panel data in the LDM
of the CPEs, we are able to not only reduce the data movement
overhead significantly by removing all the intermediate DMA
operations, but also implement highly efficient SIMD kernels.
The xMath-FFT [47] is also specially optimized for the
DGDFT code. To construct the ALB basis, wavefunctions are
mapped from the real space to the reciprocal space with many
FFT operations. Note that the wavefunctions have conjugate
symmetry at Γ point. Our customized xMath-FFT library takes
advantage of the physical symmetry and save half of the
communication and computation.

To make the transposition between uniform grids and
Legendre-Gauss-Lobatto (LGL) grids [48] efficiently, we
adopt a high performance tensor transpose library provided by
BaGuaLu [49]. In this way, the grids in the middle direction
can be transposed to the outer direction, thus enabling us to
perform level-3 BLAS function instead of level-2 function.

2) Network Optimization: In the previous implementation
of (PSelInv), restricted collective communication such as
broadcast of L is implemented via asynchronous point-to-point
MPI communication in flat tree (FTree), binary tree (BTree) or
shifted binary tree (SBTree) modes [43], as shown in Fig. 4(c-
e). Note that SBTree has greatly improved the load balance
of PSelInv by heuristically preventing one MPI task from

P1

E1

P5

E2

P9

E3

P13

E4

P17

E5

· · ·

· · ·

P473

E119

P477

E120

Pole1

P2 P6 P10 P14 P18 · · · P474 P478Pole2

P3 P7 P11 P15 P19 · · · P475 P479Pole3

P4 P8 P12 P16 P20 · · · P476 P480Pole4

PEXSIrow ×PEXSIcol

(a)

P1Pole1

P2Pole2

P3Pole3

P4Pole4

P9Pole5

· · ·

···

P235Pole119

P236Pole120

P5

P6

P7

P8

P13

· · ·

P239

P240

µ1

PEXSI
′
row ×PEXSI

′
col

P241Pole1

P242Pole2

P243Pole3

P244Pole4

P249Pole5

· · ·

···

P475Pole119

P476Pole120

P245

P246

P247

P248

P253

· · ·

P479

P480

µ2

PEXSI
′
row ×PEXSI

′
col

(b)

Redistribute

P1

P2

P3

P4

P5

P6

(c) FTree

P1

P2

P3

P4

P5

P6

(d) BTree

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

(e) SBTree

144 288 576 1152 2304 4608
20

40

80

160

Number of MPI

Ti
m

e(
s)

FTree
BTree
SBTree

(f) Scalability of each communication pattern

Fig. 4. Parallelization scheme and network optimization. (a) Previous and (b)
new parallelization scheme. Communication pattern of (c) FTree, (d) BTree,
and (e) SBTree in PSelInv. (f) Scalability of three tree-based modes on new
Sunway.

participating in multiple collective communications, hence
improving the scalability of selected inversion. In particular,
testing results on Edison supercomputer [43] equipped with a
Dragonfly network topology show that SBTree outperforms
others when more than 16 MPI tasks are used. However,
the new Sunway supercomputer employs a fat tree network
topology, and scaling behavior is quite different from Edison.
As shown in Fig. 4(f), we find that naive FTree implementation
can be 20% faster than the shifted binary tree when using
144 MPI tasks, and SBTree outperforms FTree when more
than 4, 608 MPIs are used. The enhanced scalability of FTree
implementation on the new Sunway is due to the fact that (a)
network bandwidth of a single Sunway processor is 200Gps
and not easily congested like Edison, (b) fat-tree topology
is more suitable for flat-tree communication compared to the
dragonfly topology.

3) Data Structure, Setup and I/O: To construct the DG
Hamiltonian, we constantly need to look up the pseudopoten-
tial of a given atom. The original implementation of DGDFT,
which targets general-purpose CPUs, implements the look-
up through std::map from C++ Standard Template Library,
which is implemented through trees. However, it suffers from
poor performance due to its indirect access, especially when
the system expends. Moreover, the CPEs on sw26010 pro do
not support allocating from the main memory shared across
cores, making the std::map inaccessible on CPEs and hindering
the acceleration of pseudopotential lookup. To address the
above issues, we exploit the fact that there are practically no
more than 200 different types of atoms and thus replace the
std::map with a small array. By indexing the array with the
atom number, we can acquire the pseudopotential in one direct
access. Such a mechanism is also more CPE-friendly: the LD
Cache makes loading the pseudopotential efficient in case of
direct indexing. These methods greatly boost the performance

of the DG Hamultionian step by a factor of 10 compared to
our previous design.

Previously the I/O of the atomic coordinates, pseudopoten-
tial file and control parameters are read in by all MPI tasks
and compared in a self-contained routine named electronic
structure data format (ESDF). To reduce the I/O contention
and setup time, we employ a key-value format and read-in-
and-broadcast mechanism. It greatly improves the I/O con-
tention. The corresponding setup and I/O time is reduced from
16, 481.0 to 5.9 seconds when using 165, 888 MPI tasks for
207, 360-atom system.

TABLE III
INPUT TIME COMPARISON (IN SECOND) OF ESDF FORMAT AND THE K-V

FORMAT.

#atom 2,880 6,480 11,520 46,080 207,360 2,457,600
ESDF 4.9 43.7 118.2 1020.0 16481.0 -

Key-value 0.5 0.5 0.8 1.7 5.9 68.2

VI. HOW PERFORMANCE WAS MEASURED

A. Physical and Chemical Test Systems

We construct atomic structures for four types of metallic
heterostructures, including Li/Na, Cu/G/Cu, LAO/STO and
graphene systems (MG, BG and MATBG), with negligible lat-
tice mismatch between corresponding two components. Both
the scale (> 100K atoms) and complexity (metallic systems)
of these systems make it very difficult for conventional DFT
calculations, for example, linear-scaling methods implemented
within localized atomic basis sets lose their efficacy since
nearsightedness no longer works for metallic systems. Further-
more, the cubic-scaling and quadratic memory requirement of
conventional solvers [11] limit both computational time and
system size accessible on modern supercomputers. We list
the key parameters of these systems in Table IV. The norm-
conserving pseudo-potentials [50] (Hartwigsen-Goedecker-
Hutter (HGH) and SG15 Optimized Norm-Conserving Van-
derbilt (ONCV)) are supported by DGDFT, and we use
exchange-correlation functional of local density approximation
of Goedecker-Teter-Hutter (LDA-PZ) [51] to describe the
electronic structures of these systems.

TABLE IV
COMPUTATIONAL PARAMETERS OF THE LARGEST SYSTEMS FOR MG, BG,
LI/NA, CU/G/CU AND LAO/STO IN DGDFT, INCLUDING THE NUMBER
OF ATOMS Na , THE ENERGY CUTOFF ECUT (HA), THE NUMBER OF GRID

POINTS Nr , THE NUMBER OF THE ALB FUNCTIONS Jb IN EACH ELEMENT,
THE NUMBER OF ELEMENTS M , THE NUMBER OF TOTAL ALB FUNCTIONS
Nb , THE MINIMUM (Nmin = M) AND MAXIMUM (Nmax = MJb = Nb)

NUMBERS OF MPI PROCESSES.

Systems Na Ecut Nr Jb M Nb

MG 103,680 30.0 233,472,000 120 18,432 2,211,840
BG 207,360 30.0 212,336,640 120 18,432 2,211,840

Li/Na 2,508,800 10.0 1,560,674,304 120 28,224 3,386,880
Cu/G/Cu 115,200 20.0 92,897,280 120 13,824 1,658,880

LAO/STO 128,000 30.0 174,587,904 120 9,216 1,105,920

MPE

DDR
CPE 8x8

MPE

DDR
CPE 8x8

MPE

DDR
CPE 8x8

MPE

DDR
CPE 8x8

MPE

DDR
CPE 8x8

MPE

DDR
CPE 8x8

CG networkNetwork
Interface

Network
Interface

Fig. 5. Architecture of one computing node in the new Sunway supercom-
puter.

B. Systems and Environment

All numerical tests are performed on new Sunway super-
computer, which consists of 107,520 computing nodes with a
theoretical peak performance of 1.5 EFLOPS. The computing
nodes are connected via a fat-tree network topology and every
256 nodes constitute a supernode (Fig. 5). Each node is
equipped with one sw26010 pro chip and 96 GB memory
that can be divided into 6 core groups (CGs, 16 GB memory
each CG). Each CG has 1 Manage Processing Element (MPE)
and 64 Computing Processing Elements (CPEs) organized
as 8 × 8 grid in Cmesh network. Each CPE has its own
instruction cache and data storage that can be configured as
LDM or Local Data Cache (LD Cache). Data transfer between
main memory and LDM, main memory and LD Cache are
achieved by direct memory access (DMA) and load/store
instructions respectively. Both MPE and CPE use in-house
SW64 instruction set.

In the optimized DGDFT code, we embrace an MPI+SACA
programming model to have explicitly control over CPEs
and 6 MPI tasks are launched (each binds to one CG) on
each computing node to fully exploit the computing power of
the sw26010 pro. Fortran compiler swgfortran, C++ compiler
swg++, MPI wrapper compiler mpic++ and many-core pro-
gramming extension SWUC [52] are used. We customize the
FFT, BLAS, and LAPACK libraries for better performance, as
discussed in Sec. V-B1.

C. Measurement

The total floating point operations (FLOPs) of the performed
calculations is collected via counting the effective FLOPs,
which is less than the actual FLOPs executed in PEXSI
and DGDFT. The following criteria are used to measure the
performance of the DGDFT.

• Time-to-solution, defined as per SCF time, the wall
clock time used for calculating a single SCF loop. The
“per SCF time” includes all the time used in a single
SCF loop (IO included). Setup time, such as the setup of
the system and MPI initialization and finalization, is not
included.

• Peak performance, defined as PEXSI total FLOPs
PEXSI solver time . We re-

mark that PEXSI is a sparse direct solver and notoriously
difficult to optimize on many-core architecture. For ex-
ample,the current state-of-the-art HPCG can only achieve
27 PFLOPS on the entire Sunway platform.

• Sustained performance, defined as PEXSI total FLOPs
total wall clock time . The

“total wall clock time” includes the whole application
running time (including IO).

D. Numerical Accuracy

Because the ALB functions can systematically approach
the complete basis limit, the numerical accuracy of DGDFT
only depends on the energy cutoff and the number of the
ALB functions, and is comparable to standard plane-wave
DFT calculations (QUANTUM ESPRESSO [15]), which has
already been validated in our previous works [20], [30], [36].
In our experiments, we set the energy cutoff and the number
of the ALB functions are chosen to ensure, for example, the
total energy of G180 is accurate to 10−4 Ha/atom and atomic
forces are accurate to 10−3 Ha/Bohr respectively.

VII. PERFORMANCE RESULTS

We show the performance improvement of SuperLU_DIST
in Sec. VII-A, and the overall performance of DGDFT will be
discussed in Sec. VII-B. The baseline codes for comparison
are DGDFT and PEXSI linked with many-core libraries such
as FFT, BLAS, and LAPACK etc.

A. Small System

In this subsection, we report the performance improve-
ment by adapting the optimization techniques introduced in
Sec. V. We focus on the performance of the SuperLU_DIST
package for simplicity reasons, and we remark that similar
optimizations are also applied to PSelInv. The benchmark
Hamiltonian matrices are generated from two typical metallic
systems: one 12, 960-atom graphene and one 86, 400-atom
Li/Na system. Both Hamiltonian matrices share the same
dimension of 69, 120 and the number of nonzero elements is
3, 456, 000 (sparsity: 0.07%). A minimum of 4 MPI tasks(
2 × 2 grid, 4 CGs) are used to store the matrices. The
baseline for comparison is SuperLU_DIST 7.2 accelerated
with SWBLAS on CPEs. We remark that the total FLOPs
of the LU factorization for Li/Na (34.1 TFLOPs) is about 2
times that of the bilayer graphene (14.8 TFLOPs) system due
to various fill-in behavior in the symbolic factorization.

0

100

200

300

400

Baseline ShurUpdate UPFactor SNodeFactor Granularity

Ti
m
e(
s)

Bilayer graphene
Li/Na

1.0x

1.0x

1.3x

1.4x

6.5x

5.2x

7.0x

5.4x

7.3x

6.3x

Fig. 6. Step-by-step improvement of the optimizations for bilayer graphene
(12,960 atoms) and Li/Na (86,400 atoms).

A. SchurUpdate. In the optimized SuperLU_DIST, the
“copy-and-fill-in” of gathering L and U factors is substituted
with pointer reference (Fig. 3(e)), thus the corresponding
data-movement time is eliminated. Note that the time for
"Gather" takes no time (0%) in the final results, thus it is
not included in Table V. Meanwhile, the scatter of the result
matrix V (Fig. 3(e)) is optimized from indirect addressing
to consecutively block memory access. The optimization of
the SchurUpdate leads to a speedup factor of 1.3 and 1.4 for
bilayer graphene and Li/Na systems, respectively.

B. UPFactor. Now we focus on the optimization of the
U panel factorization since it becomes the dominant part and
takes 32% − 40% of total time for the graphene and Li/Na
Hamiltonian. We can exploit the block structure of the U panel
by substituting vector-wise factorization (TRSV) with matrix
factorization (TRSM), and the results show that a speedup
factor of ∼ 100 can be achieved. Compared to the baseline, the
optimized version now reaches an overall speedup factor of 6.5
and 5.2 for bilayer graphene and Li/Na systems, respectively.
We remark that the speedup of U panel factorization not only
reduces the computational time, but also reduces the MPI wait
time of other ranks, as discussed in Sec. V-A.

C. SNodeFactor. As detailed in Sec. V-A, factorization of
the diagonal supernode is optimized by utilizing customized
kernels. A speedup factor of 1.4 is achieved since the diagonal
supernode is small (Dimension: 256). Compared to the base-
line, we find that the overall speedup factor is increased to 7.0
and 5.4 for bilayer graphene and Li/Na systems, respectively.

D. Granularity. As discussed in Sec. V-A, an optimal
choice of the supernode size is used in our optimized code to
replace the default parameter in the baseline. And as shown
in Fig. 6, the overall speedup factors increase to 7.3 and 6.3
for Li/Na and graphene matrices, respectively.

Finally we achieve 0.54 and 0.44 TFLOPS for the LU
factorization of the 12, 960-atom bilayer graphene and the
86, 400-atom Li/Na matrices on 4 CGs, reaching 5.7% and
4.7% of the theoretical peak, respectively. A percentage of
time consumed by critical kernels in total execution time is
shown at Table V. We find that GEMM operation takes more
time in the graphene system (28% percent) than Li/Na system
(24%), and communication time takes more time in the Li/Na
(38%) than bilayer graphene (22%). Note that the percentage
of communication time for the Li/Na system grows fast in
strong scaling tests, and peak performance drops from 5%
to 1.2% when scaling from 4 to 64 MPI tasks. We remark
that even the GEMM operations in SchurUpdate are still
memory-bound due to the small block size(average size of
the matrix is: 2019, 256, 2019.). The bottleneck resource
is memory bandwidth, and profiling results show that the
optimized PEXSI reaches 80% of the theoretical limit of
memory bandwidth.

B. Scaling towards Large-Scale Systems

A. Strong Scaling. Fig. 7 shows the strong scaling of “time-
to-solution” of graphene (G2880 and G72000) ranging from
576 CGs to 576,000 CGs. First we show that the speedup of

TABLE V
PERCENTAGE OF MAJOR PARTS IN THE OPTIMIZED SUPERLU_DIST WITH

4 MPI TASKS FOR BILAYER GRAPHENE (BG) AND LI/NA WITH 12,960
AND 86,400 ATOMS, RESPECTIVELY.

System GEMM UPFactor LFactor Comm LookAhead Scatter
BG 28% 2% 9% 22% 20% 19%
Li/Na 24% 1% 4% 38% 17% 16%

96 192 384 768 1.44K 2.88K 5.76K 12K 24K 48K 96K
Number of Nodes

102

103

104

105

Ti
m

e
to

 s
ol

ut
io

n
(s

)

100%
96.5%

95.8%

96.5%

96.8%

99.3%

99.3%100%

99.9%

98.1%

94.1%

93.9%

88.3%
72.5%

100.0%
83.8% 52.1% 27.8%

100.0%
90.1%

72.7%
59.0%

100%

99.7%

94.8%

72.0%

85.6%

ideal scaling
G2880_MPE
G2880_CPE
G72000_CPE_baseline (Nμ=3)

G72000_CPE_optimized (Nμ=3)

G72000_CPE_optimized (Nμ=12)

Fig. 7. Strong scaling of two graphene systems (G2880 and G72000) with
MPE, CPE (baseline) and optimized CPE versions of DGDFT.

DGDFT on CPE (baseline) over MPE is about 50 times with
a 2880-atom graphene system due to the accelerated many-
core libraries. In all following tests, we use the CPE version
as baseline(Fig. 7 red line). Testing results on a 72,000-atom
graphene system (Nµ=3) show that our optimized DGDFT
can be >10 times faster than the baseline. We remark that
the parallelization scheme in the baseline is sub-optimal in
exploiting the parallelism of poles, thus leading to a worse
time-to-solution (but better parallel efficiency due to worse
peak performance). As shown in Fig. 7, the optimized DGDFT
has a parallel efficiency of 27.8% when scaling from 72,000 to
576,000 MPIs. The corresponding peak performance of PEXSI
reaches 9.58 PFLOPS (5.7% of peak) to 38.95 PFLOPS (2.9%
of peak). We remark that the time-to-solution is 445.8 seconds
per SCF for G72000 when using high-precision parameters
(Ecut = 30.0 Ha and Nb/Na = 24 ALB functions), which
contains 432, 000 electrons and is 3.43 times larger than
the current state-of-the-art [11] (105, 08 Mg atoms, 126, 096
electrons, 142.7 seconds per SCF, peak 46 PFLOPS). Based
on the cubic scaling of conventional DFT methods, an estima-
tion of the time-to-solution for 72,000-atom graphene (432K
electrons) is 3.433×142.7 ≈ 5738 seconds and our optimized
DGDFT can be 12.9 times faster than the current state-of-the-
art.

The black line in Fig. 7 show the scaling of DGDFT in a
computationally intensive scenario when 12 chemical potential
points are used (4 times FLOPs than Nµ=3). Each pole’s
evaluation is fixed on a 20 × 20 processor grid, and strong
scaling is carried out by parallelizing the poles. We find that
the parallel efficiency is 61% when scaling from 72,000 to
576,000 MPIs, and the peak performance is maintained at

∼ 5.7%.

5x104 105 2x105 5x105 106 2x106 5x106 107

Number of electrons

2

4

8

16

32

64

PF
LO

PS

Current SoA
52.4 P
614,400 MPI 64.0 P 552,960 MPI

29.4 P 276,480 MPI

17.1 P 138,240 MPI

6.7 P 69,120 MPI

3.5 P 34,560 MPI

552,960 MPI
19.9 P

276,480 MPI7.9 P

138,240 MPI5.6 P

69,120 MPI2.2 P

34,560 MPI1.1 P

1.05 1.02

MG
BG
Li/Na
Cu/G/Cu
LAO/STO
DFT-FE
Fitted Scaling

Fig. 8. Weak scaling of PEXSI w.r.t. the number of electrons for MG, BG,
Li/Na, Cu/G/Cu and LAO/STO.

B. Weak Scaling. Fig. 8 shows the weak scaling of PEXSI
w.r.t the number of electrons for four complex metallic systems
(Li/Na, Cu/G/Cu, LAO/STO, MG and BG) . Note that PEXSI
is the most computationally intensive part and theoretically
scales as O(N1.5) for 2D systems. The performance of PEXSI
scales almost perfectly up to 552, 960 MPI tasks for both BG
with high-precision parameters (Ecut = 30.0 Ha and Nb/Na =
10.7 basis functions per atom) and Li/Na with low-precision
parameters (Ecut = 10.0 Ha and Nb/Na = 1.3 basis functions
per atom). This indicates that PEXSI solver can reach higher
FLOPS with no intrinsic obstacles when solving a bigger prob-
lem on future HPC platform. Note that Li/Na reaches lower
peak than BG due to more MPI communication as discussed
in Sec. VII-A. For a 207, 360-atom bilayer graphene, our
optimized DGDFT can achieve a time-to-solution of 931.0
seconds per SCF iteration, and PEXSI can reach 64.0
PFLOPS (∼5.0% of theoretical peak) on 92, 160 computing
nodes (36 million cores), which is unprecedented for sparse
direct solvers. As far as we know, this is for the first time a
sparse direct solver, which is notoriously difficult on modern
many-core architecture, is successfully employed in extreme-
scale DFT calculations. As a comparison, the best performance
of sparse matrix benchmark HPCG can achieve 5 PFLOPS (27
PFLOPS if breaking the HPCG rules) on new Sunway [46].
We remark that a sustained performance (Setup and I/O time
included) of 23 PFLOPS (1.8% of the peak) is achieved for
207, 360-atom bilayer graphene on 92, 160 computing nodes.

The arithmetic intensity of our sparse direct solver PEXSI
is far lower than conventional solvers such as iterative or
explicitly diagonalization methods (O(N3)). Furthermore, the
quadratic memory footprint of conventional solvers also limit
the system scale accessible on modern supercomputers. For
example, the current state-of-the-art metallic system is a 11K-
atom Mg system with a time-to-solution of 142 seconds per
SCF and 46 PFLOPS (27.8% peak of 3,800 GPU nodes) on
Summit. To reach a physical system of 2.5M atom (17.2M
electrons) as shown in Fig. 8, conventional methods require a
much bigger supercomputer and time-to-solution is estimated

to be 2, 209, 147 seconds according to the cubic scaling. This
indicates that our DGDFT can be 2054 times faster than the
current state-of-the-art for systems with 2.5M atom.

VIII. IMPLICATIONS

A. Scientific Applications

The moiré electrons in MATBG [5] form ordered quantum
dot arrays, paving the way for next-generation devices, such
as graphene FETs [4]. However, such large-scale complex and
metallic systems (> 10K) are too difficult to investigate by
conventional cubic-scaling DFT calculations.

Fig. 9. Quantum electronic structures of MATBG, involving (a) atomic
structures, (b) top and side views of local density of states (LDOS) at the
Fermi level.

We use DGDFT to investigate ab initio electronic structures
of MATBG (10K carbon atom) as shown in Fig. 9. We calcu-
late the local density of states (LDOS) of MATBG and observe
the moiré superlattices trap a number of localized electrons at
the Fermi level in MATBG due to strong quantum electron-
correlation effect. Our DFT simulations can serve as the first
step towards ab initio understanding of superconducting and
correlated insulating behaviors observed in experiments [5] for
next-generation devices [4].

B. Outlook of DGDFT

For quantum mechanics, we are trying to develop the
DG framework into carrying out complex electronic structure
calculations such as Hartree-Fock, post-Hartree-Fock, and
quantum computational chemistry. For atomistic TCAD [2],
simulating the next-generation FETs at atomic level (10∼100
nm), such as Fin, Gate-All-Around and Multi-Bridge Channel
FETs, is still challenging, because their atomic structures
and electronic properties are too complex and too large in
DFT calculations. We plan to incorporate the non-equilibrium
Green’s functions formalism [2] in DGDFT to simulate the
quantum transport properties in FETs.

To date, leadship supercomputers worldwide vary in sys-
tem design (ARM A64FX for Fugaku and AMD GPUs for
Frontier). Since each architecture has its own proprietary
programming model such as CUDA, RoCM, etc, one major
challenge is the performance portability. Though we only

showcase the optimization of DGDFT on the new Sunway,
we remark that the corresponding optimization strategies can
be analogously applied to other many-core architectures such
as GPUs. Furthermore, the optimization shown in this work
helps improve the performance of DGDFT by two orders of
magnitude compared to the case of Edison [30] and Sunway
TaihuLight [31]. To our understanding, these optimization
techniques can be applied to other platforms with no obstacle.

C. Outlook for Post-E Supercomputers

The past three decades have witnessed tremendous success
of massively parallel computing, and the mainstream design
philosophy is driven by compute-bound linear algebra applica-
tions such as LINPACK.As a result, every year the computing
power of high-end supercomputers has steadily increased by
around a factor of two, paving the way to the exascale com-
puting era now. Meanwhile, the gap among computing power,
memory bandwidth and network bandwidth is growing, for
example, the FLOPS/Byte ratio of the fastest supercomputer
has increased from 5 to 30 in the last decade. Bounded by the
hardware technology and power wall, supercomputers in the
near future will most likely keep the inertia of pursuing FLOPS
with many-core architecture, e.g., the tensor cores with higher
FLOPS/Byte ratio. This trend has greatly shaped the landscape
of HPC algorithms to dense linear algebra with a divide-and-
conquer style, which can be reflected by sub-domain commu-
nication pattern and dense computations of the Gordon Bell
Prize winning applications in recent years [11], [53]. On the
other hand, supercomputers today are no longer performance-
friendly for algorithms with frequent global communication or
inconsistent memory access, especially sparse linear algebra
operations. It is difficult to exploit data locality only from the
perspective of hardware architecture for dense computations.
The challenge is to exploit more and more application/input
specific feature to “create" data locality. In order to boost
the peak performance on the Sunway many-core architecture,
we exploit the block structure of the Hamiltonian matrix,
which is common in many real-world physical problems.
We believe that the insights gained in this work can be
helpful for other scientific applications with similar pattern.
In fact, our algorithmic innovations appeal to the emerging
concept of “Octopodes” [54] for improving overall co-design
cycle of future supercomputers. And our DGDFT can be one
potential candidate for further pushing the limit of quantum
mechanical simulations into macroscopic scale (1000 nm) on
post-E supercomputers.

ACKNOWLEDGMENT

All numerical experiments are performed on the new
Sunway supercomputer. This work is partly supported
by National Key Research and Development Program of
China (2016YFA0200600, 2021YFB0300600), National Sci-
ence Foundation of China (22173093, 12131002, T2125013,
22288201, 22003061), Innovation Program for Quantum Sci-
ence and Technology (2021ZD0303306) and Anhui Initiative
in Quantum Information Technologies (AHY090400), CAS

Project for Young Scientists in Basic Research (YSBR-005)
and Network Information Project of Chinese Academy of
Sciences (CASWX2021SF-0103). We thank Prof. Lin Lin
(University of California, Berkeley and Lawrence Berkeley
National Laboratory), Prof. Chao Yang (Lawrence Berkeley
National Laboratory), Prof. Weinan E (Peking University),
Prof. Yi Luo (University of Science and Technology of China),
Prof. Lin-Wang Wang (Institute of Semiconductors, Chinese
Academy of Sciences) and Dr. Long Wang for helpful discus-
sions.

REFERENCES

[1] G. Iannaccone, F. Bonaccorso, and et al., “Quantum engineering of
transistors based on 2D materials heterostructures,” Nat. Nanotechnol.,
vol. 13, pp. 183–191, 2018.

[2] A. N. Ziogas, T. Ben-Nun, and et al., “A data-centric approach to
extreme-scale ab initio dissipative quantum transport simulations,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–13.

[3] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,”
Nature, vol. 499, pp. 419–425, 2013.

[4] J. R. Prance and M. B. Shalom, “Building devices in magic-angle
graphene,” Nat. Nanotechnol., vol. 16, pp. 745–746, 2021.

[5] Y. Cao, V. Fatemi, and et al., “Unconventional superconductivity in
magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp.
43–50, 2018.

[6] J. K. Stark, Y. Ding, and P. A. Kohl, “Dendrite-free electrodeposition
and reoxidation of lithium-sodium alloy for metal-anode battery,” J.
Electrochem. Soc., vol. 158, no. 10, p. A1100, 2011.

[7] A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the
LaAlO3/SrTiO3 heterointerface,” Nature, vol. 427, pp. 423–426, 2004.

[8] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys Rev,
vol. 136, p. B864, 1964.

[9] W. Kohn and L. J. Sham, “Self-consistent equations including exchange
and correlation effects,” Phys Rev, vol. 140, p. A1133, 1965.

[10] L. Wang, “Divide-and-conquer quantum mechanical material simula-
tions with exascale supercomputers,” Natl. Sci. Rev., vol. 1, no. 4, pp.
604–617, 2014.

[11] S. Das, P. Motamarri, and et al., “Fast, scalable and accurate finite-
element based ab initio calculations using mixed precision computing:
46 pflops simulation of a metallic dislocation system,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[12] M. J. Frisch, J. A. Pople, and J. S. Binkley, “Self-consistent molecular
orbital methods 25. supplementary functions for gaussian basis sets,” J.
Chem. Phys., vol. 80, pp. 3265–3269, 1984.

[13] D. R. Bowler and T. Miyazaki, “O(N) methods in electronic structure
calculations,” Rep. Prog. Phys., vol. 75, p. 036503, 2012.

[14] F. Gygi, E. W. Draeger, M. Schulz, and et. al., “Large-scale electronic
structure calculations of high-z metals on the bluegene/l platform,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ser.
SC ’06. New York, NY, USA: Association for Computing Machinery,
2006, p. 45–es.

[15] P. Giannozzi, S. Baroni, N. Bonini, and et al., “QUANTUM ESPRESSO:
A modular and open-source software project for quantum simulations of
materials,” J Phys: Condens Matter, vol. 21, no. 39, p. 395502, 2009.

[16] W. Hu, L. Lin, and et al., “Adaptively compressed exchange operator
for large-scale hybrid density functional calculations with applications to
the adsorption of water on silicene,” J. Chem. Theory Comput., vol. 13,
no. 3, pp. 1188–1198, 2017.

[17] W. Yang, “Electron density as the basic variable: a divide-and-conquer
approach to the ab initio computation of large molecules,” J. Mol.
Struct.:THEOCHEM, vol. 255, pp. 461–479, 1992.

[18] Z. Zhao, J. Meza, and L. Wang, “A divide-and-conquer linear scaling
three-dimensional fragment method for large scale electronic structure
calculations,” J. Phys. Condens. Matter., vol. 20, pp. 294 203–294 210,
2008.

[19] V. Michaud-Rioux, L. Zhang, and H. Guo, “RESCU: A real space
electronic structure method,” J. Comput. Phys., vol. 307, pp. 593–613,
2016.

[20] A. S. Banerjee, L. Lin, and et al., “Two-level chebyshev filter based
complementary subspace method: Pushing the envelope of large-scale
electronic structure calculations,” J. Chem. Theory Comput., vol. 14, pp.
2930–2946, 2018.

[21] T. D. Kühne, M. Iannuzzi, and et al., “Cp2k: An electronic structure and
molecular dynamics software package-quickstep: Efficient and accurate
electronic structure calculations,” J. Chem. Phys., vol. 152, no. 19, p.
194103, 2020.

[22] A. Nakata, J. S. Baker, S. Y. Mujahed, and et al., “Large scale and linear
scaling dft with the conquest code,” J. Chem. Phys., vol. 152, no. 16,
p. 164112, 2020.

[23] T. Ozaki and H. Kino, “Efficient projector expansion for the ab initio
LCAO method,” Phys. Rev. B., vol. 72, no. 4, p. 045121, 2005.

[24] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, “Introduc-
ing ONETEP: Linear-scaling density functional simulations on parallel
computers,” J. Chem. Phys., vol. 122, no. 8, p. 084119, 2005.

[25] H. Shang, F. Li, Y. Zhang, and et al., “Extreme-scale ab initio quantum
raman spectra simulations on the leadership hpc system in china,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–13.

[26] J. M. Soler, E. Artacho, J. D. Gale, and et al., “The SIESTA method
for ab initio order-N materials simulation,” J Phys: Condens Matter,
vol. 14, no. 11, p. 2745, 2002.

[27] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid
metals,” Phys Rev B, vol. 47, p. 558, 1993.

[28] L. Wang, B. Lee, and et al., “Linearly scaling (3D) fragment method
for large-scale electronic structure calculations,” in Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08. IEEE
Press, 2008.

[29] Y. Hasegawa and J.-I. I. et al., “First-principles calculations of electron
states of a silicon nanowire with 100,000 atoms on the k computer,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: Association for Computing Machinery, 2011.

[30] W. Hu, L. Lin, and C. Yang, “DGDFT: A massively parallel method for
large scale density functional theory calculations,” J. Chem. Phys., vol.
143, no. 12, p. 124110, 2015.

[31] W. Hu, X. Qin, and et al., “High performance computing of dgdft for
tens of thousands of atoms using millions of cores on sunway taihulight,”
Sci. Bull., vol. 66, no. 2, pp. 111–119, 2021.

[32] B. Cockburn, G. Karniadakis, and C.Shu, “The development of discon-
tinuous galerkin methods discontinuous galerkin methods,” in Berlin:
Springer. ACM, 2000, pp. 3–50.

[33] C. Hu and C. Shu, “A discontinuous galerkin finite element method for
hamilton-jacobi equations,” SIAM J. Sci. Comput., vol. 12, no. 2, p. 666,
1999.

[34] I. Lomtev and G. E. Karniadakis, “A discontinuous galerkin method for
the navier–stokes equations,” Int. J. Numer. Methods Fluids, vol. 29,
no. 5, p. 587, 1999.

[35] L. Lin, J. Lu, L. Ying, and W. E, “Adaptive local basis set for Kohn-
Sham density functional theory in a discontinuous Galerkin framework
I: Total energy calculation,” J. Comput. Phys., vol. 231, no. 4, pp. 2140–
2154, 2012.

[36] G. Zhang, L. Lin, and et al., “Adaptive local basis set for kohn-
sham density functional theory in a discontinuous galerkin framework
II: Force, vibration, and molecular dynamics calculations,” J. Comput.
Phys., vol. 335, pp. 426–443, 2017.

[37] L. Lin, M. Chen, C. Yang, and L. He, “Accelerating atomic orbital-
based electronic structure calculation via pole expansion and selected
inversion,” J Phys: Condens Matter, vol. 25, p. 295501, 2013.

[38] W. Hu, L. Lin, and et al., “Edge-modified phosphorene nanoflake
heterojunctions as highly efficient solar cells,” Nano Lett., vol. 16, p.
1675, 2016.

[39] W. Hu, Y. Huang, X. Qin, and et. al., “Room-temperature magnetism
and tunable energy gaps in edge-passivated zigzag graphene quantum
dots,” npj 2D Mater. Appl., vol. 3, p. 17, 2019.

[40] S. Liu, W. Hu, and et al., “[Ti12In6O18(OOCC6H5)30]: A multifunc-
tional hetero-polyoxotitanate nanocluster with high stability and visible
photoactivity,” Dalton Trans., vol. 46, no. 3, pp. 678–684, 2017.

[41] J. Zhang, W. Hu, and et al., “Stable heteropolyoxotitanate nanocluster for
full solar spectrum photocatalytic hydrogen evolution,” J. Phys. Chem.
C, vol. 121, no. 34, pp. 18 326–18 332, 2017.

[42] X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Transactions on Mathematical Software (TOMS), vol. 29, no. 2, pp.
110–140, 2003.

[43] M. Jacquelin, L. Lin, and C. Yang, “PSelInv-A distributed memory
parallel algorithm for selected inversion: The symmetric case,” ACM
Transactions on Mathematical Software (TOMS), vol. 43, no. 3, pp. 1–
28, 2016.

[44] W. Jia and L. Lin, “Robust determination of the chemical potential in
the pole expansion and selected inversion method for solving kohn-sham
density functional theory,” J. Chem. Phys., vol. 147, no. 14, p. 144107,
2017.

[45] https://www.top500.org, June 2022 (2022-06-01).
[46] Q. Zhu, H. Luo, and et al., “Enabling and scaling the hpcg benchmark

on the newest generation sunway supercomputer with 42 million het-
erogeneous cores,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–13.

[47] Y. Zhao, Y. Ao, and et al., “General implementation of 1-d fft on the
sunway 26010 processor,” Journal of Software (in Chinese), vol. 31,
no. 10, pp. 3184–3196, 2020.

[48] E. Faccioli, F. Maggio, and et al., “2D and 3D elastic wave propagation
by a pseudo-spectral domain decomposition method,” J. Seismol., vol. 1,
no. 3, pp. 237–251, 1997.

[49] Z. Ma, J. He, and et al., “BaGuaLu: Targeting brain scale pretrained
models with over 37 million cores,” in Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, 2022, pp. 192–204.

[50] C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic separable dual-
space gaussian pseudopotentials from H to Rn,” Phys Rev B, vol. 58, p.
3641, 1998.

[51] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space gaussian
pseudopotentials,” Phys. Rev. B, vol. 54, p. 1703, 1996.

[52] H. Cao and J. Chen, “Design and implementation of ShenWei universal
C/C++,” 2022. [Online]. Available: https://arxiv.org/abs/2208.00607

[53] W. Jia, H. Wang, and et al., “Pushing the limit of molecular dynamics
with ab initio accuracy to 100 million atoms with machine learning,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’20. IEEE Press,
2020.

[54] S. Matsuoka, J. Domke, and et. al., “Preparing for the future – Rethink-
ing proxy apps,” arXiv:2204.07336, 2022.

